Abstract

Running stably on uneven natural terrain takes skillful control and was critical for human evolution. Even as runners circumnavigate hazardous obstacles such as steep drops, they must contend with uneven ground that is gentler but still destabilizing. We do not know how footsteps are guided based on the uneven topography of the ground and how those choices influence stability. Therefore, we studied human runners on trail-like undulating uneven terrain and measured their energetics, kinematics, ground forces, and stepping patterns. We find that runners do not selectively step on more level ground areas. Instead, the body's mechanical response, mediated by the control of leg compliance, helps maintain stability without requiring precise regulation of footsteps. Furthermore, their overall kinematics and energy consumption on uneven terrain showed little change from flat ground. These findings may explain how runners remain stable on natural terrain while devoting attention to tasks besides guiding footsteps.

Data availability

All data points are plotted in either the main text, the figure supplements, or source data attached to figures and tables.

Article and author information

Author details

  1. Nihav Dhawale

    1Department of Mechanical Engineering and Materials Science, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Madhusudhan Venkadesan

    1Department of Mechanical Engineering and Materials Science, Yale University, New Haven, United States
    For correspondence
    m.venkadesan@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5754-7478

Funding

Human Frontier Science Program (RGY0091/2013)

  • Madhusudhan Venkadesan

The Wellcome Trust DBT India Alliance (NA)

  • Madhusudhan Venkadesan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Institute Ethics Committee (Human Studies) of the National Centre for Biological Sciences, Bengaluru, India (TFR:NCB:15\_IBSC/2012), where the experiments were conducted. Informed consent was obtained by the experimenter N. Dhawale and M. Venkadesan, who are the authors of this manuscript. The procedure followed for seeking informed consent followed the steps that were approved by the Ethics Committee mentioned above.

Copyright

© 2023, Dhawale & Venkadesan

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,617
    views
  • 237
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nihav Dhawale
  2. Madhusudhan Venkadesan
(2023)
How human runners regulate footsteps on uneven terrain
eLife 12:e67177.
https://doi.org/10.7554/eLife.67177

Share this article

https://doi.org/10.7554/eLife.67177

Further reading

    1. Neuroscience
    Walter Senn, Dominik Dold ... Mihai A Petrovici
    Research Article

    One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.

    1. Cell Biology
    2. Neuroscience
    Josse Poppinga, Nolan J Barrett ... Jan RT van Weering
    Research Article

    Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.