Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate

  1. Wan Hua Li
  2. Ke Huang
  3. Yang Cai
  4. Qian Wen Wang
  5. Wen Jie Zhu
  6. Yun Nan Hou
  7. Sujing Wang
  8. Sheng Cao
  9. Zhi Ying Zhao
  10. Xu Jie Xie
  11. Yang Du
  12. Chi-Sing Lee  Is a corresponding author
  13. Hon Cheung Lee  Is a corresponding author
  14. Hongmin Zhang  Is a corresponding author
  15. Yong Juan Zhao  Is a corresponding author
  1. The Chinese University of Hong Kong (Shenzhen), China
  2. Hong Kong Baptist University, China
  3. Southern University of Science and Technology, China
  4. Peking University Shenzhen Graduate School, China

Abstract

SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red-shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.

Data availability

Diffraction data have been deposited in PDB under the accession code 7DJT. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Wan Hua Li

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  2. Ke Huang

    Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
    Competing interests
    No competing interests declared.
  3. Yang Cai

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  4. Qian Wen Wang

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Wen Jie Zhu

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Yun Nan Hou

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Sujing Wang

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  8. Sheng Cao

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  9. Zhi Ying Zhao

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  10. Xu Jie Xie

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  11. Yang Du

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  12. Chi-Sing Lee

    Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
    For correspondence
    cslee-chem@hkbu.edu.hk
    Competing interests
    No competing interests declared.
  13. Hon Cheung Lee

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    For correspondence
    leehoncheung@gmail.com
    Competing interests
    No competing interests declared.
  14. Hongmin Zhang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    zhanghm@sustech.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4356-3615
  15. Yong Juan Zhao

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    For correspondence
    zhaoyongjuan@cuhk.edu.cn
    Competing interests
    Yong Juan Zhao, Two Chinese patents (202010528147.3; 202011359354.7) are in the process of application..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-1912

Funding

Ministry of Science and Technology of the People's Republic of China (2019YFA090600)

  • Hongmin Zhang

National Science Foundation of China (31871401)

  • Yong Juan Zhao

Hong Kong Baptist University (RC-SGT2/18-19/SCI/005)

  • Chi-Sing Lee

Hong Kong Baptist University (RC-ICRS-18-19-01A)

  • Chi-Sing Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in strict accordance with animal use protocol approved by Peking University Shenzhen Graduate School Animal Care and Use Committee (#AP0015001). All animals (C57BL6/J), purchased from Guangdong Medical Laboratory Animal Center (China), were handled in accordance with the guidelines of the Committee on the Ethic of Animal Experiments. All surgery was performed after euthanasia and efforts were made to minimize suffering.

Reviewing Editor

  1. Hening Lin, Cornell University, United States

Publication history

  1. Received: February 9, 2021
  2. Accepted: May 2, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Version of Record published: May 24, 2021 (version 2)

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,306
    Page views
  • 487
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wan Hua Li
  2. Ke Huang
  3. Yang Cai
  4. Qian Wen Wang
  5. Wen Jie Zhu
  6. Yun Nan Hou
  7. Sujing Wang
  8. Sheng Cao
  9. Zhi Ying Zhao
  10. Xu Jie Xie
  11. Yang Du
  12. Chi-Sing Lee
  13. Hon Cheung Lee
  14. Hongmin Zhang
  15. Yong Juan Zhao
(2021)
Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate
eLife 10:e67381.
https://doi.org/10.7554/eLife.67381

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Lauren C Radlinski, Andreas J Bäumler
    Insight

    Listeria monocytogenes uses respiration to sustain a risky fermentative lifestyle during infection.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haikel Dridi et al.
    Research Article Updated

    Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in Caenorhabditis elegans (C. elegans); however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals, UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Furthermore, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in ‘leaky’ channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2–3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in lifespan among species.