Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate

  1. Wan Hua Li
  2. Ke Huang
  3. Yang Cai
  4. Qian Wen Wang
  5. Wen Jie Zhu
  6. Yun Nan Hou
  7. Sujing Wang
  8. Sheng Cao
  9. Zhi Ying Zhao
  10. Xu Jie Xie
  11. Yang Du
  12. Chi-Sing Lee  Is a corresponding author
  13. Hon Cheung Lee  Is a corresponding author
  14. Hongmin Zhang  Is a corresponding author
  15. Yong Juan Zhao  Is a corresponding author
  1. The Chinese University of Hong Kong (Shenzhen), China
  2. Hong Kong Baptist University, China
  3. Southern University of Science and Technology, China
  4. Peking University Shenzhen Graduate School, China

Abstract

SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red-shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.

Data availability

Diffraction data have been deposited in PDB under the accession code 7DJT. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Wan Hua Li

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  2. Ke Huang

    Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
    Competing interests
    No competing interests declared.
  3. Yang Cai

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  4. Qian Wen Wang

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Wen Jie Zhu

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Yun Nan Hou

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Sujing Wang

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  8. Sheng Cao

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  9. Zhi Ying Zhao

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  10. Xu Jie Xie

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  11. Yang Du

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  12. Chi-Sing Lee

    Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
    For correspondence
    cslee-chem@hkbu.edu.hk
    Competing interests
    No competing interests declared.
  13. Hon Cheung Lee

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    For correspondence
    leehoncheung@gmail.com
    Competing interests
    No competing interests declared.
  14. Hongmin Zhang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    zhanghm@sustech.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4356-3615
  15. Yong Juan Zhao

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    For correspondence
    zhaoyongjuan@cuhk.edu.cn
    Competing interests
    Yong Juan Zhao, Two Chinese patents (202010528147.3; 202011359354.7) are in the process of application..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-1912

Funding

Ministry of Science and Technology of the People's Republic of China (2019YFA090600)

  • Hongmin Zhang

National Science Foundation of China (31871401)

  • Yong Juan Zhao

Hong Kong Baptist University (RC-SGT2/18-19/SCI/005)

  • Chi-Sing Lee

Hong Kong Baptist University (RC-ICRS-18-19-01A)

  • Chi-Sing Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in strict accordance with animal use protocol approved by Peking University Shenzhen Graduate School Animal Care and Use Committee (#AP0015001). All animals (C57BL6/J), purchased from Guangdong Medical Laboratory Animal Center (China), were handled in accordance with the guidelines of the Committee on the Ethic of Animal Experiments. All surgery was performed after euthanasia and efforts were made to minimize suffering.

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,381
    views
  • 918
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wan Hua Li
  2. Ke Huang
  3. Yang Cai
  4. Qian Wen Wang
  5. Wen Jie Zhu
  6. Yun Nan Hou
  7. Sujing Wang
  8. Sheng Cao
  9. Zhi Ying Zhao
  10. Xu Jie Xie
  11. Yang Du
  12. Chi-Sing Lee
  13. Hon Cheung Lee
  14. Hongmin Zhang
  15. Yong Juan Zhao
(2021)
Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate
eLife 10:e67381.
https://doi.org/10.7554/eLife.67381

Share this article

https://doi.org/10.7554/eLife.67381

Further reading

    1. Biochemistry and Chemical Biology
    Marius Landau, Sherif Elsabbagh ... Joachim E Schultz
    Research Article

    The biosynthesis of cyclic 3′,5′-adenosine monophosphate (cAMP) by mammalian membrane-bound adenylyl cyclases (mACs) is predominantly regulated by G-protein-coupled receptors (GPCRs). Up to now the two hexahelical transmembrane domains of mACs were considered to fix the enzyme to membranes. Here, we show that the transmembrane domains serve in addition as signal receptors and transmitters of lipid signals that control Gsα-stimulated mAC activities. We identify aliphatic fatty acids and anandamide as receptor ligands of mAC isoforms 1–7 and 9. The ligands enhance (mAC isoforms 2, 3, 7, and 9) or attenuate (isoforms 1, 4, 5, and 6) Gsα-stimulated mAC activities in vitro and in vivo. Substitution of the stimulatory membrane receptor of mAC3 by the inhibitory receptor of mAC5 results in a ligand inhibited mAC5–mAC3 chimera. Thus, we discovered a new class of membrane receptors in which two signaling modalities are at a crossing, direct tonic lipid and indirect phasic GPCR–Gsα signaling regulating the biosynthesis of cAMP.

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.