1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate

  1. Wan Hua Li
  2. Ke Huang
  3. Yang Cai
  4. Qian Wen Wang
  5. Wen Jie Zhu
  6. Yun Nan Hou
  7. Sujing Wang
  8. Sheng Cao
  9. Zhi Ying Zhao
  10. Xu Jie Xie
  11. Yang Du
  12. Chi-Sing Lee  Is a corresponding author
  13. Hon Cheung Lee  Is a corresponding author
  14. Hongmin Zhang  Is a corresponding author
  15. Yong Juan Zhao  Is a corresponding author
  1. The Chinese University of Hong Kong (Shenzhen), China
  2. Hong Kong Baptist University, China
  3. Southern University of Science and Technology, China
  4. Peking University Shenzhen Graduate School, China
Research Article
  • Cited 0
  • Views 343
  • Annotations
Cite this article as: eLife 2021;10:e67381 doi: 10.7554/eLife.67381

Abstract

SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red-shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.

Data availability

Diffraction data have been deposited in PDB under the accession code 7DJT. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Wan Hua Li

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  2. Ke Huang

    Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
    Competing interests
    No competing interests declared.
  3. Yang Cai

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  4. Qian Wen Wang

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Wen Jie Zhu

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Yun Nan Hou

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Sujing Wang

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  8. Sheng Cao

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  9. Zhi Ying Zhao

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  10. Xu Jie Xie

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    Competing interests
    No competing interests declared.
  11. Yang Du

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    Competing interests
    No competing interests declared.
  12. Chi-Sing Lee

    Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
    For correspondence
    cslee-chem@hkbu.edu.hk
    Competing interests
    No competing interests declared.
  13. Hon Cheung Lee

    School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
    For correspondence
    leehoncheung@gmail.com
    Competing interests
    No competing interests declared.
  14. Hongmin Zhang

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    zhanghm@sustech.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4356-3615
  15. Yong Juan Zhao

    School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
    For correspondence
    zhaoyongjuan@cuhk.edu.cn
    Competing interests
    Yong Juan Zhao, Two Chinese patents (202010528147.3; 202011359354.7) are in the process of application..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-1912

Funding

Ministry of Science and Technology of the People's Republic of China (2019YFA090600)

  • Hongmin Zhang

National Science Foundation of China (31871401)

  • Yong Juan Zhao

Hong Kong Baptist University (RC-SGT2/18-19/SCI/005)

  • Chi-Sing Lee

Hong Kong Baptist University (RC-ICRS-18-19-01A)

  • Chi-Sing Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in strict accordance with animal use protocol approved by Peking University Shenzhen Graduate School Animal Care and Use Committee (#AP0015001). All animals (C57BL6/J), purchased from Guangdong Medical Laboratory Animal Center (China), were handled in accordance with the guidelines of the Committee on the Ethic of Animal Experiments. All surgery was performed after euthanasia and efforts were made to minimize suffering.

Reviewing Editor

  1. Hening Lin, Cornell University, United States

Publication history

  1. Received: February 9, 2021
  2. Accepted: May 2, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 343
    Page views
  • 101
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Molly C Sutherland et al.
    Research Article

    Cytochromes c are ubiquitous heme proteins in mitochondria and bacteria, all possessing a CXXCH (CysXxxXxxCysHis) motif with covalently attached heme. We describe the first in vitro reconstitution of cytochrome c biogenesis using purified mitochondrial (HCCS) and bacterial (CcsBA) cytochrome c synthases. We employ apocytochrome c and peptide analogs containing CXXCH as substrates, examining recognition determinants, thioether attachment, and subsequent release and folding of cytochrome c. Peptide analogs reveal very different recognition requirements between HCCS and CcsBA. For HCCS, a minimal 16-mer peptide is required, comprised of CXXCH and adjacent alpha helix 1, yet neither thiol is critical for recognition. For bacterial CcsBA, both thiols and histidine are required, but not alpha helix 1. Heme attached peptide analogs are not released from the HCCS active site; thus, folding is important in the release mechanism. Peptide analogs behave as inhibitors of cytochrome c biogenesis, paving the way for targeted control.

    1. Biochemistry and Chemical Biology
    Weihan Li et al.
    Research Advance Updated

    The unfolded protein response (UPR) maintains protein folding homeostasis in the endoplasmic reticulum (ER). In metazoan cells, the Ire1 branch of the UPR initiates two functional outputs—non-conventional mRNA splicing and selective mRNA decay (RIDD). By contrast, Ire1 orthologs from Saccharomyces cerevisiae and Schizosaccharomyces pombe are specialized for only splicing or RIDD, respectively. Previously, we showed that the functional specialization lies in Ire1’s RNase activity, which is either stringently splice-site specific or promiscuous (Li et al., 2018). Here, we developed an assay that reports on Ire1’s RNase promiscuity. We found that conversion of two amino acids within the RNase domain of S. cerevisiae Ire1 to their S. pombe counterparts rendered it promiscuous. Using biochemical assays and computational modeling, we show that the mutations rewired a pair of salt bridges at Ire1 RNase domain’s dimer interface, changing its protomer alignment. Thus, Ire1 protomer alignment affects its substrates specificity.