Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex

  1. Eric Kenji Lee
  2. Hymavathy Balasubramanian
  3. Alexandra Tsolias
  4. Stephanie Udochku Anakwe
  5. Maria Medalla
  6. Krishna V Shenoy
  7. Chandramouli Chandrasekaran  Is a corresponding author
  1. BOSTON UNIVERSITY, United States
  2. Bernstein Center for Computational Neuroscience, Germany
  3. Boston University, United States
  4. Stanford University, United States

Abstract

Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using featurebased approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.

Data availability

Data generated or analysed during this study are included in the linked Dryad repository (doi:10.5061/dryad.z612jm6cf). Source data for all figures are also in this zip file.

The following data sets were generated

Article and author information

Author details

  1. Eric Kenji Lee

    Psychological and Brain Sciences, BOSTON UNIVERSITY, BOSTON, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7166-0909
  2. Hymavathy Balasubramanian

    Bernstein Center for Computational Neuroscience, Bernstein Center for Computational Neuroscience, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Tsolias

    Anatomy and Neurobiology, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Udochku Anakwe

    Undergraduate Program in Neuroscience, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Medalla

    Anatomy & Neurobiology, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Krishna V Shenoy

    Department of Electrical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chandramouli Chandrasekaran

    Anatomy and Neurobiology, Boston University, Boston, United States
    For correspondence
    cchandr1@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1711-590X

Funding

National Institute of Neurological Disorders and Stroke (R00NS092972)

  • Chandramouli Chandrasekaran

National Institute on Deafness and Other Communication Disorders (DC017844)

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (NS095548)

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (NS098968)

  • Krishna V Shenoy

Defense Advanced Research Projects Agency (N66001-10-C-2010)

  • Krishna V Shenoy

Defense Advanced Research Projects Agency (W911NF-14-2-0013)

  • Krishna V Shenoy

Simons Foundation (325380)

  • Krishna V Shenoy

Simons Foundation (543045)

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (122969)

  • Chandramouli Chandrasekaran

Office of Naval Research (N000141812158)

  • Krishna V Shenoy

Larry and Pamela Garlick

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (K99NS092972)

  • Chandramouli Chandrasekaran

Wu Tsai Neurosciences Institute, Stanford University

  • Krishna V Shenoy

Hong Seh and Vivian H Lim Endowed Professorship

  • Krishna V Shenoy

Howard Hughes Medical Institute

  • Krishna V Shenoy

National Institute of Mental Health (R00MH101234)

  • Maria Medalla

National Institute of Mental Health (R01MH116008)

  • Maria Medalla

Whitehall Foundation (2019-12-77)

  • Chandramouli Chandrasekaran

Brain and Behavior Research Foundation (27923)

  • Chandramouli Chandrasekaran

NIH Office of the Director (DP1HD075623)

  • Krishna V Shenoy

National Institute on Deafness and Other Communication Disorders (DC014034)

  • Krishna V Shenoy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the procedures were approved were approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC, Protocol Number 8856, entitled "Cortical Processing of Arm Movements"). Surgical procedures were performed under anesthesia, and every effort was made to minimize suffering. Appropriate analgesia, pain relief, and antibiotics were administered to the animals when needed after surgical approval.

Copyright

© 2021, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,924
    views
  • 913
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Kenji Lee
  2. Hymavathy Balasubramanian
  3. Alexandra Tsolias
  4. Stephanie Udochku Anakwe
  5. Maria Medalla
  6. Krishna V Shenoy
  7. Chandramouli Chandrasekaran
(2021)
Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex
eLife 10:e67490.
https://doi.org/10.7554/eLife.67490

Share this article

https://doi.org/10.7554/eLife.67490

Further reading

    1. Neuroscience
    William Hockeimer, Ruo-Yah Lai ... James J Knierim
    Research Article

    The hippocampus is believed to encode episodic memory by binding information about the content of experience within a spatiotemporal framework encoding the location and temporal context of that experience. Previous work implies a distinction between positional inputs to the hippocampus from upstream brain regions that provide information about an animal’s location and nonpositional inputs which provide information about the content of experience, both sensory and navigational. Here, we leverage the phenomenon of ‘place field repetition’ to better understand the functional dissociation between positional and nonpositional information encoded in CA1. Rats navigated freely on a novel maze consisting of linear segments arranged in a rectilinear, city-block configuration, which combined elements of open-field foraging and linear-track tasks. Unlike typical results in open-field foraging, place fields were directionally tuned on the maze, even though the animal’s behavior was not constrained to extended, one-dimensional (1D) trajectories. Repeating fields from the same cell tended to have the same directional preference when the fields were aligned along a linear corridor of the maze, but they showed uncorrelated directional preferences when they were unaligned across different corridors. Lastly, individual fields displayed complex time dynamics which resulted in the population activity changing gradually over the course of minutes. These temporal dynamics were evident across repeating fields of the same cell. These results demonstrate that the positional inputs that drive a cell to fire in similar locations across the maze can be behaviorally and temporally dissociated from the nonpositional inputs that alter the firing rates of the cell within its place fields, offering a potential mechanism to increase the flexibility of the system to encode episodic variables within a spatiotemporal framework provided by place cells.

    1. Neuroscience
    Aida Bareghamyan, Changfeng Deng ... Don B Arnold
    Tools and Resources

    Recombinant optogenetic and chemogenetic proteins are potent tools for manipulating neuronal activity and controlling neural circuit function. However, there are few analogous tools for manipulating the structure of neural circuits. Here, we introduce three rationally designed genetically encoded tools that use E3 ligase-dependent mechanisms to trigger the degradation of synaptic scaffolding proteins, leading to functional ablation of synapses. First, we developed a constitutive excitatory synapse ablator, PFE3, analogous to the inhibitory synapse ablator GFE3. PFE3 targets the RING domain of the E3 ligase Mdm2 and the proteasome-interacting region of Protocadherin 10 to the scaffolding protein PSD-95, leading to efficient ablation of excitatory synapses. In addition, we developed a light-inducible version of GFE3, paGFE3, using a novel photoactivatable complex based on the photocleavable protein PhoCl2c. paGFE3 degrades Gephyrin and ablates inhibitory synapses in response to 400 nm light. Finally, we developed a chemically inducible version of GFE3, chGFE3, which degrades inhibitory synapses when combined with the bio-orthogonal dimerizer HaloTag ligand-trimethoprim. Each tool is specific, reversible, and capable of breaking neural circuits at precise locations.