Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex
Abstract
Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using featurebased approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.
Data availability
Data generated or analysed during this study are included in the linked Dryad repository (doi:10.5061/dryad.z612jm6cf). Source data for all figures are also in this zip file.
-
WaveMAP analysis of extracellular waveforms from monkey premotor cortex during decision-makinghttps://creativecommons.org/publicdomain/zero/1.0/.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (R00NS092972)
- Chandramouli Chandrasekaran
National Institute on Deafness and Other Communication Disorders (DC017844)
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (NS095548)
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (NS098968)
- Krishna V Shenoy
Defense Advanced Research Projects Agency (N66001-10-C-2010)
- Krishna V Shenoy
Defense Advanced Research Projects Agency (W911NF-14-2-0013)
- Krishna V Shenoy
Simons Foundation (325380)
- Krishna V Shenoy
Simons Foundation (543045)
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (122969)
- Chandramouli Chandrasekaran
Office of Naval Research (N000141812158)
- Krishna V Shenoy
Larry and Pamela Garlick
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (K99NS092972)
- Chandramouli Chandrasekaran
Wu Tsai Neurosciences Institute, Stanford University
- Krishna V Shenoy
Hong Seh and Vivian H Lim Endowed Professorship
- Krishna V Shenoy
Howard Hughes Medical Institute
- Krishna V Shenoy
National Institute of Mental Health (R00MH101234)
- Maria Medalla
National Institute of Mental Health (R01MH116008)
- Maria Medalla
Whitehall Foundation (2019-12-77)
- Chandramouli Chandrasekaran
Brain and Behavior Research Foundation (27923)
- Chandramouli Chandrasekaran
NIH Office of the Director (DP1HD075623)
- Krishna V Shenoy
National Institute on Deafness and Other Communication Disorders (DC014034)
- Krishna V Shenoy
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the procedures were approved were approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC, Protocol Number 8856, entitled "Cortical Processing of Arm Movements"). Surgical procedures were performed under anesthesia, and every effort was made to minimize suffering. Appropriate analgesia, pain relief, and antibiotics were administered to the animals when needed after surgical approval.
Copyright
© 2021, Lee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,847
- views
-
- 899
- downloads
-
- 61
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.
-
- Neuroscience
Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.