Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex
Abstract
Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using featurebased approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.
Data availability
Data generated or analysed during this study are included in the linked Dryad repository (doi:10.5061/dryad.z612jm6cf). Source data for all figures are also in this zip file.
-
WaveMAP analysis of extracellular waveforms from monkey premotor cortex during decision-makinghttps://creativecommons.org/publicdomain/zero/1.0/.
Article and author information
Author details
Funding
National Institute of Neurological Disorders and Stroke (R00NS092972)
- Chandramouli Chandrasekaran
National Institute on Deafness and Other Communication Disorders (DC017844)
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (NS095548)
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (NS098968)
- Krishna V Shenoy
Defense Advanced Research Projects Agency (N66001-10-C-2010)
- Krishna V Shenoy
Defense Advanced Research Projects Agency (W911NF-14-2-0013)
- Krishna V Shenoy
Simons Foundation (325380)
- Krishna V Shenoy
Simons Foundation (543045)
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (122969)
- Chandramouli Chandrasekaran
Office of Naval Research (N000141812158)
- Krishna V Shenoy
Larry and Pamela Garlick
- Krishna V Shenoy
National Institute of Neurological Disorders and Stroke (K99NS092972)
- Chandramouli Chandrasekaran
Wu Tsai Neurosciences Institute, Stanford University
- Krishna V Shenoy
Hong Seh and Vivian H Lim Endowed Professorship
- Krishna V Shenoy
Howard Hughes Medical Institute
- Krishna V Shenoy
National Institute of Mental Health (R00MH101234)
- Maria Medalla
National Institute of Mental Health (R01MH116008)
- Maria Medalla
Whitehall Foundation (2019-12-77)
- Chandramouli Chandrasekaran
Brain and Behavior Research Foundation (27923)
- Chandramouli Chandrasekaran
NIH Office of the Director (DP1HD075623)
- Krishna V Shenoy
National Institute on Deafness and Other Communication Disorders (DC014034)
- Krishna V Shenoy
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the procedures were approved were approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC, Protocol Number 8856, entitled "Cortical Processing of Arm Movements"). Surgical procedures were performed under anesthesia, and every effort was made to minimize suffering. Appropriate analgesia, pain relief, and antibiotics were administered to the animals when needed after surgical approval.
Copyright
© 2021, Lee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,738
- views
-
- 886
- downloads
-
- 56
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Neuroscience
Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.
-
- Neuroscience
Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.