Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex

  1. Eric Kenji Lee
  2. Hymavathy Balasubramanian
  3. Alexandra Tsolias
  4. Stephanie Udochukwu Anakwe
  5. Maria Medalla
  6. Krishna V Shenoy
  7. Chandramouli Chandrasekaran  Is a corresponding author
  1. BOSTON UNIVERSITY, United States
  2. Bernstein Center for Computational Neuroscience, Germany
  3. Boston University, United States
  4. Stanford University, United States

Abstract

Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using featurebased approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.

Data availability

Data generated or analysed during this study are included in the linked Dryad repository (doi:10.5061/dryad.z612jm6cf). Source data for all figures are also in this zip file.

The following data sets were generated

Article and author information

Author details

  1. Eric Kenji Lee

    Psychological and Brain Sciences, BOSTON UNIVERSITY, BOSTON, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7166-0909
  2. Hymavathy Balasubramanian

    Bernstein Center for Computational Neuroscience, Bernstein Center for Computational Neuroscience, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Tsolias

    Anatomy and Neurobiology, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Udochukwu Anakwe

    Undergraduate Program in Neuroscience, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Medalla

    Anatomy & Neurobiology, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Krishna V Shenoy

    Department of Electrical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chandramouli Chandrasekaran

    Anatomy and Neurobiology, Boston University, Boston, United States
    For correspondence
    cchandr1@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1711-590X

Funding

National Institute of Neurological Disorders and Stroke (R00NS092972)

  • Chandramouli Chandrasekaran

National Institute on Deafness and Other Communication Disorders (DC017844)

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (NS095548)

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (NS098968)

  • Krishna V Shenoy

Defense Advanced Research Projects Agency (N66001-10-C-2010)

  • Krishna V Shenoy

Defense Advanced Research Projects Agency (W911NF-14-2-0013)

  • Krishna V Shenoy

Simons Foundation (325380)

  • Krishna V Shenoy

Simons Foundation (543045)

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (122969)

  • Chandramouli Chandrasekaran

Office of Naval Research (N000141812158)

  • Krishna V Shenoy

Larry and Pamela Garlick

  • Krishna V Shenoy

National Institute of Neurological Disorders and Stroke (K99NS092972)

  • Chandramouli Chandrasekaran

Wu Tsai Neurosciences Institute, Stanford University

  • Krishna V Shenoy

Hong Seh and Vivian H Lim Endowed Professorship

  • Krishna V Shenoy

Howard Hughes Medical Institute

  • Krishna V Shenoy

National Institute of Mental Health (R00MH101234)

  • Maria Medalla

National Institute of Mental Health (R01MH116008)

  • Maria Medalla

Whitehall Foundation (2019-12-77)

  • Chandramouli Chandrasekaran

Brain and Behavior Research Foundation (27923)

  • Chandramouli Chandrasekaran

NIH Office of the Director (DP1HD075623)

  • Krishna V Shenoy

National Institute on Deafness and Other Communication Disorders (DC014034)

  • Krishna V Shenoy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the procedures were approved were approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC, Protocol Number 8856, entitled "Cortical Processing of Arm Movements"). Surgical procedures were performed under anesthesia, and every effort was made to minimize suffering. Appropriate analgesia, pain relief, and antibiotics were administered to the animals when needed after surgical approval.

Copyright

© 2021, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,616
    views
  • 870
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Kenji Lee
  2. Hymavathy Balasubramanian
  3. Alexandra Tsolias
  4. Stephanie Udochukwu Anakwe
  5. Maria Medalla
  6. Krishna V Shenoy
  7. Chandramouli Chandrasekaran
(2021)
Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex
eLife 10:e67490.
https://doi.org/10.7554/eLife.67490

Share this article

https://doi.org/10.7554/eLife.67490

Further reading

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.