Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention

  1. Amélie Aussel  Is a corresponding author
  2. Ian C Fiebelkorn
  3. Sabine Kastner
  4. Nancy J Kopell
  5. Benjamin Rafael Pittman-Polletta PhD
  1. Boston University, United States
  2. University of Rochester, United States
  3. Princeton University, United States

Abstract

Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is available on the ModelDB open repositories.

The following data sets were generated

Article and author information

Author details

  1. Amélie Aussel

    Cognitive Rhythms Collaborative, Boston University, Boston, United States
    For correspondence
    aaussel@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0498-2905
  2. Ian C Fiebelkorn

    Department of Neuroscience, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabine Kastner

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9742-965X
  4. Nancy J Kopell

    Cognitive Rhythms Collaborative, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Rafael Pittman-Polletta PhD

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6798-7191

Funding

National Institutes of Health (P50 MH109429)

  • Ian C Fiebelkorn
  • Sabine Kastner
  • Nancy J Kopell
  • Benjamin Rafael Pittman-Polletta PhD

National Institute of Mental Health (RO1-MH64043)

  • Ian C Fiebelkorn
  • Sabine Kastner

National Eye Institute (RO1-EY017699)

  • Ian C Fiebelkorn
  • Sabine Kastner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Aussel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,072
    views
  • 211
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amélie Aussel
  2. Ian C Fiebelkorn
  3. Sabine Kastner
  4. Nancy J Kopell
  5. Benjamin Rafael Pittman-Polletta PhD
(2023)
Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention
eLife 12:e67684.
https://doi.org/10.7554/eLife.67684

Share this article

https://doi.org/10.7554/eLife.67684

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.