Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention

  1. Amélie Aussel  Is a corresponding author
  2. Ian C Fiebelkorn
  3. Sabine Kastner
  4. Nancy J Kopell
  5. Benjamin Rafael Pittman-Polletta PhD
  1. Boston University, United States
  2. University of Rochester, United States
  3. Princeton University, United States

Abstract

Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is available on the ModelDB open repositories.

The following data sets were generated

Article and author information

Author details

  1. Amélie Aussel

    Cognitive Rhythms Collaborative, Boston University, Boston, United States
    For correspondence
    aaussel@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0498-2905
  2. Ian C Fiebelkorn

    Department of Neuroscience, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabine Kastner

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9742-965X
  4. Nancy J Kopell

    Cognitive Rhythms Collaborative, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Rafael Pittman-Polletta PhD

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6798-7191

Funding

National Institutes of Health (P50 MH109429)

  • Ian C Fiebelkorn
  • Sabine Kastner
  • Nancy J Kopell
  • Benjamin Rafael Pittman-Polletta PhD

National Institute of Mental Health (RO1-MH64043)

  • Ian C Fiebelkorn
  • Sabine Kastner

National Eye Institute (RO1-EY017699)

  • Ian C Fiebelkorn
  • Sabine Kastner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Aussel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 961
    views
  • 206
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amélie Aussel
  2. Ian C Fiebelkorn
  3. Sabine Kastner
  4. Nancy J Kopell
  5. Benjamin Rafael Pittman-Polletta PhD
(2023)
Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention
eLife 12:e67684.
https://doi.org/10.7554/eLife.67684

Share this article

https://doi.org/10.7554/eLife.67684

Further reading

    1. Neuroscience
    Tai-Ying Lee, Yves Weissenberger ... Johannes C Dahmen
    Research Article

    Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals’ behavior can be decoded from the activity of those neurons with a high degree of accuracy. Surprisingly, this was also the case in mice in which auditory cortical input to the midbrain had been removed by bilateral cortical lesions. This illustrates that subcortical auditory structures have access to a wealth of non-acoustic information and can, independently of the auditory cortex, carry much richer neural representations than previously thought.

    1. Neuroscience
    Kantapon Pum Wiboonsaksakul, Olivia ME Leavitt Brown, Kathleen E Cullen
    Review Article

    The vestibular system is integral to behavior; the loss of peripheral vestibular function leads to disabling consequences, such as blurred vision, dizziness, and unstable posture, severely limiting activities of daily living. Fortunately, the vestibular system’s well-defined peripheral structure and well-understood encoding strategies offer unique opportunities for developing sensory prostheses to restore vestibular function. While these devices show promising results in both animal models and implanted patients, substantial room for improvement remains. Research from an engineering perspective has largely focused on optimizing stimulation protocol to improve outcomes. However, this approach has often been pursued in isolation from research in neuroscience that has enriched our understanding of neural responses at the synaptic, cellular, and circuit levels. Accordingly, this review bridges the domains of neuroscience and engineering to consider recent progress and challenges in vestibular prosthesis development. We advocate for interdisciplinary approaches that leverage studies of neural circuits at the population level, especially in light of recent advancement in large-scale recording technology, to identify impediments still to overcome and to develop more naturalistic stimulation strategies. Fully integrating neuroscience and engineering in the context of prosthesis development will help advance the field forward and ultimately improve patient outcomes.