Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention

  1. Amélie Aussel  Is a corresponding author
  2. Ian C Fiebelkorn
  3. Sabine Kastner
  4. Nancy J Kopell
  5. Benjamin Rafael Pittman-Polletta PhD
  1. Boston University, United States
  2. University of Rochester, United States
  3. Princeton University, United States

Abstract

Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is available on the ModelDB open repositories.

The following data sets were generated

Article and author information

Author details

  1. Amélie Aussel

    Cognitive Rhythms Collaborative, Boston University, Boston, United States
    For correspondence
    aaussel@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0498-2905
  2. Ian C Fiebelkorn

    Department of Neuroscience, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabine Kastner

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9742-965X
  4. Nancy J Kopell

    Cognitive Rhythms Collaborative, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin Rafael Pittman-Polletta PhD

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6798-7191

Funding

National Institutes of Health (P50 MH109429)

  • Ian C Fiebelkorn
  • Sabine Kastner
  • Nancy J Kopell
  • Benjamin Rafael Pittman-Polletta PhD

National Institute of Mental Health (RO1-MH64043)

  • Ian C Fiebelkorn
  • Sabine Kastner

National Eye Institute (RO1-EY017699)

  • Ian C Fiebelkorn
  • Sabine Kastner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Aussel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 916
    views
  • 202
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amélie Aussel
  2. Ian C Fiebelkorn
  3. Sabine Kastner
  4. Nancy J Kopell
  5. Benjamin Rafael Pittman-Polletta PhD
(2023)
Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention
eLife 12:e67684.
https://doi.org/10.7554/eLife.67684

Share this article

https://doi.org/10.7554/eLife.67684

Further reading

    1. Neuroscience
    Jing Li, Chao Ning ... Chuan Zhou
    Research Article

    Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic–pituitary–gonadal axis in mammals to trigger the juvenile–adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.

    1. Neuroscience
    Yoav Ger, Moni Shahar, Nitzan Shahar
    Research Article

    Theoretical computational models are widely used to describe latent cognitive processes. However, these models do not equally explain data across participants, with some individuals showing a bigger predictive gap than others. In the current study, we examined the use of theory-independent models, specifically recurrent neural networks (RNNs), to classify the source of a predictive gap in the observed data of a single individual. This approach aims to identify whether the low predictability of behavioral data is mainly due to noisy decision-making or misspecification of the theoretical model. First, we used computer simulation in the context of reinforcement learning to demonstrate that RNNs can be used to identify model misspecification in simulated agents with varying degrees of behavioral noise. Specifically, both prediction performance and the number of RNN training epochs (i.e., the point of early stopping) can be used to estimate the amount of stochasticity in the data. Second, we applied our approach to an empirical dataset where the actions of low IQ participants, compared with high IQ participants, showed lower predictability by a well-known theoretical model (i.e., Daw’s hybrid model for the two-step task). Both the predictive gap and the point of early stopping of the RNN suggested that model misspecification is similar across individuals. This led us to a provisional conclusion that low IQ subjects are mostly noisier compared to their high IQ peers, rather than being more misspecified by the theoretical model. We discuss the implications and limitations of this approach, considering the growing literature in both theoretical and data-driven computational modeling in decision-making science.