Most cancers carry a substantial deleterious load due to Hill-Robertson interference

  1. Susanne Tilk  Is a corresponding author
  2. Svyatoslav Tkachenko
  3. Christina Curtis
  4. Dmitri A Petrov
  5. Christopher D McFarland  Is a corresponding author
  1. Stanford University, United States
  2. Case Western Reserve University, United States

Abstract

Cancer genomes exhibit surprisingly weak signatures of negative selection1,2. This may be because selective pressures are relaxed or because genome-wide linkage prevents deleterious mutations from being removed (Hill-Robertson interference)3. By stratifying tumors by their genome-wide mutational burden, we observe negative selection (dN/dS ~ 0.56) in low mutational burden tumors, while remaining cancers exhibit dN/dS ratios ~1. This suggests that most tumors do not remove deleterious passengers. To buffer against deleterious passengers, tumors upregulate heat shock pathways as their mutational burden increases. Finally, evolutionary modeling finds that Hill-Robertson interference alone can reproduce patterns of attenuated selection and estimates the total fitness cost of passengers to be 46% per cell on average. Collectively, our findings suggest that the lack of observed negative selection in most tumors is not due to relaxed selective pressures, but rather the inability of selection to remove deleterious mutations in the presence of genome-wide linkage.

Data availability

Exonic, open-access SNV calls (WES) of 10,486 cancer patients in (The Cancer Genome Atlas) TCGA were downloaded from the Multi-Center Mutation Calling in Multiple Cancers (MC3) project. This repository uses a consensus of seven mutation-calling algorithms. Expression data of SNVs were downloaded from the Genotype-Tissue Expression (GTEx) project (v7 release). All CNAs were downloaded from the COSMIC database on June 20151.Gene expression data compared to CNAs was downloaded from the COSMIC database on 14 September 2019.

The following previously published data sets were used
    1. Tate et al
    (2018) COSMIC - gene expression data
    COSMIC, CosmicCompleteGeneExpression.tsv.gz.
    1. GTEX Consortium
    (2020) GTEX - expression data
    GTEX, GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.gz.

Article and author information

Author details

  1. Susanne Tilk

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    tilk@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9156-9360
  2. Svyatoslav Tkachenko

    Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christina Curtis

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0166-3802
  4. Dmitri A Petrov

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3664-9130
  5. Christopher D McFarland

    Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
    For correspondence
    cdm113@case.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Human Genome Research Institute (T32-HG000044-21)

  • Christopher D McFarland

National Institutes of Health (E25-CA180993)

  • Christopher D McFarland

National Institutes of Health (DP1-CA238296)

  • Christina Curtis

National Cancer Institute (R01-CA207133)

  • Dmitri A Petrov

National Institute of General Medical Sciences (R35-GM118165)

  • Dmitri A Petrov

National Institutes of Health (R01-CA231253)

  • Dmitri A Petrov

National Cancer Institute (K99-CA226506)

  • Christopher D McFarland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Tilk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,469
    views
  • 392
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susanne Tilk
  2. Svyatoslav Tkachenko
  3. Christina Curtis
  4. Dmitri A Petrov
  5. Christopher D McFarland
(2022)
Most cancers carry a substantial deleterious load due to Hill-Robertson interference
eLife 11:e67790.
https://doi.org/10.7554/eLife.67790

Share this article

https://doi.org/10.7554/eLife.67790

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.