Role of BRCA2 DNA-binding and C-terminal domain on its mobility and conformation in DNA repair

  1. Maarten W Paul
  2. Arshdeep Sidhu
  3. Yongxin Liang
  4. Sarah E van Rossum-Fikkert
  5. Hanny Odijk
  6. Alex N Zelensky
  7. Roland Kanaar
  8. Claire Wyman  Is a corresponding author
  1. Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Netherlands

Abstract

BRCA2 is an essential protein in genome maintenance, homologous recombination and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse ES cells and defined their contribution in HR function and dynamic localization in the nucleus, by single particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 was determined by scanning force microscopy. BRCA2 mobility and DNA damage-induced increase in the immobile fraction was largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced homologous recombination function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5.

Article and author information

Author details

  1. Maarten W Paul

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7990-6010
  2. Arshdeep Sidhu

    Department of Molecular Genetics, Department of Radiation Oncology, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2851-1019
  3. Yongxin Liang

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah E van Rossum-Fikkert

    Department of Molecular Genetics, Department of Radiation Oncology, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Hanny Odijk

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex N Zelensky

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Roland Kanaar

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9364-8727
  8. Claire Wyman

    Department of Molecular Genetics, Department of Radiation Oncology, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    For correspondence
    c.wyman@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2549-6893

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Maarten W Paul

KWF Kankerbestrijding (10436)

  • Arshdeep Sidhu

Convergence Health & Technology (CHT16)

  • Maarten W Paul

KWF Kankerbestrijding (11143)

  • Yongxin Liang

Cancer Genomics Centre

  • Alex N Zelensky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Paul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,382
    views
  • 309
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maarten W Paul
  2. Arshdeep Sidhu
  3. Yongxin Liang
  4. Sarah E van Rossum-Fikkert
  5. Hanny Odijk
  6. Alex N Zelensky
  7. Roland Kanaar
  8. Claire Wyman
(2021)
Role of BRCA2 DNA-binding and C-terminal domain on its mobility and conformation in DNA repair
eLife 10:e67926.
https://doi.org/10.7554/eLife.67926

Share this article

https://doi.org/10.7554/eLife.67926

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    Vladimir Khayenko, Cihan Makbul ... Hans Michael Maric
    Research Article

    The hepatitis B virus (HBV) infection is a major global health problem, with chronic infection leading to liver complications and high death toll. Current treatments, such as nucleos(t)ide analogs and interferon-α, effectively suppress viral replication but rarely cure the infection. To address this, new antivirals targeting different components of the HBV molecular machinery are being developed. Here we investigated the hepatitis B core protein (HBc) that forms the viral capsids and plays a vital role in the HBV life cycle. We explored two distinct binding pockets on the HBV capsid: the central hydrophobic pocket of HBc-dimers and the pocket at the tips of capsid spikes. We synthesized a geranyl dimer that binds to the central pocket with micromolar affinity, and dimeric peptides that bind the spike-tip pocket with sub-micromolar affinity. Cryo-electron microscopy further confirmed the binding of peptide dimers to the capsid spike tips and their capsid-aggregating properties. Finally, we show that the peptide dimers induce HBc aggregation in vitro and in living cells. Our findings highlight two tractable sites within the HBV capsid and provide an alternative strategy to affect HBV capsids.