Role of BRCA2 DNA-binding and C-terminal domain on its mobility and conformation in DNA repair

  1. Maarten W Paul
  2. Arshdeep Sidhu
  3. Yongxin Liang
  4. Sarah E van Rossum-Fikkert
  5. Hanny Odijk
  6. Alex N Zelensky
  7. Roland Kanaar
  8. Claire Wyman  Is a corresponding author
  1. Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Netherlands

Abstract

BRCA2 is an essential protein in genome maintenance, homologous recombination and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse ES cells and defined their contribution in HR function and dynamic localization in the nucleus, by single particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 was determined by scanning force microscopy. BRCA2 mobility and DNA damage-induced increase in the immobile fraction was largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced homologous recombination function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5.

Article and author information

Author details

  1. Maarten W Paul

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7990-6010
  2. Arshdeep Sidhu

    Department of Molecular Genetics, Department of Radiation Oncology, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2851-1019
  3. Yongxin Liang

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah E van Rossum-Fikkert

    Department of Molecular Genetics, Department of Radiation Oncology, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Hanny Odijk

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex N Zelensky

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Roland Kanaar

    Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9364-8727
  8. Claire Wyman

    Department of Molecular Genetics, Department of Radiation Oncology, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
    For correspondence
    c.wyman@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2549-6893

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Maarten W Paul

KWF Kankerbestrijding (10436)

  • Arshdeep Sidhu

Convergence Health & Technology (CHT16)

  • Maarten W Paul

KWF Kankerbestrijding (11143)

  • Yongxin Liang

Cancer Genomics Centre

  • Alex N Zelensky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Version history

  1. Received: February 26, 2021
  2. Preprint posted: March 2, 2021 (view preprint)
  3. Accepted: July 12, 2021
  4. Accepted Manuscript published: July 13, 2021 (version 1)
  5. Version of Record published: July 30, 2021 (version 2)

Copyright

© 2021, Paul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,149
    views
  • 280
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maarten W Paul
  2. Arshdeep Sidhu
  3. Yongxin Liang
  4. Sarah E van Rossum-Fikkert
  5. Hanny Odijk
  6. Alex N Zelensky
  7. Roland Kanaar
  8. Claire Wyman
(2021)
Role of BRCA2 DNA-binding and C-terminal domain on its mobility and conformation in DNA repair
eLife 10:e67926.
https://doi.org/10.7554/eLife.67926

Share this article

https://doi.org/10.7554/eLife.67926