Antibiotic Resistance: Bacterial evolution on demand
Bacteria are the most abundant form of life and inhabit virtually every environment on Earth, from the soil to the human body. They display remarkable genetic flexibility and can respond rapidly to environmental changes. Bacteria have developed different strategies to increase their genetic diversity, including the use of mobile genetic elements, which can either move around the genome or be transferred to a different bacterium. These mobile genetic elements enable bacteria to acquire new genes that have already run the gauntlet of natural selection in other bacterial species – exemplified by the rapid emergence and global spread of antibiotic resistance.
However, producing resistance proteins in the absence of antibiotics, or acquiring resistance genes that are not yet needed, is costly and may reduce the viability of a bacterium. One way to counterbalance this burden is a genetic element known as the integron. Integrons are genetic platforms that can capture and shuffle genes, thus providing instant adaptive benefits in fluctuating environments (Stokes and Hall, 1989).
Integrons are not mobile in their own right, but they are often embedded within mobile genetic elements that can facilitate their transfer. They contain an array of antibiotic resistant genes known as gene cassettes. The ones located at the start of the integron produce more proteins than the ones closer to the end (Collis and Hall, 1995). During stress situations – such as exposure to antibiotics – an enzyme called integrase is produced, allowing the microbes to shuffle the order of the cassettes in the integron (Guerin et al., 2009). Consequently, gene cassettes encoding the appropriate adaptive response to an antibiotic will be moved closer to the start, where expression levels are higher (Figure 1). It has been proposed that this mechanism allows bacteria to adapt to fluctuating environmental conditions ‘on demand’, but this hypothesis has never been experimentally tested (Escudero et al., 2015).
Now, in eLife, Célia Souque, José A. Escudero and Craig MacLean of the University of Oxford and the Universidade Complutense de Madrid report new insights into how bacteria evolve on demand when exposed to antibiotic treatment (Souque et al., 2021). Souque et al. used two strains of the bacterium Pseudomonas aeruginosa, differing only by the presence or absence of a functional integrase. Both strains contained an integron with three gene cassettes encoding resistance to different antibiotics, with the relevant resistant gene in the last position.
The researchers used an experimental evolution protocol known as the evolutionary ramp design. In this set up, bacteria are challenged with daily doublings of antibiotic concentrations, which force the bacterial populations to rapidly increase their antibiotic resistance levels or face extinction. After 13 concentration ramps with the antibiotic gentamicin, significantly more populations containing a functional integrase survived than their integrase-negative counterparts, which largely went extinct.
The ability to move the required gentamicin-resistance gene cassette forward in the integron to increase resistance levels may at first resemble adaptive evolution with a neo-Lamarckian flavor. However, examining the genetic sequence of the earlier evolved strains (that arose at the start of the ramp experiment) revealed a range of cassette arrays, with the three gene cassettes in various positions. This suggests that integrase activity generates random genetic diversity upon which natural selection could act.
In fact, structural variation was found in half of the evolved populations early in the evolutionary ramp experiments. But at the highest antibiotic concentrations, most of them contained a single variant i.e., they all contained the same cassette array. However, the evolved control populations that were either not exposed to antibiotics or only subjected to low concentrations, did not show any structural variation in the cassette arrays. Taken together, this provides compelling evidence favoring the ‘evolution on demand hypothesis’.
This study represents an excellent example of how hypotheses concerning the evolution and maintenance of mobile genetic elements can be tested using combined approaches of experimental evolution, population biology and genetics. To that end, Souque et al. also propose new mechanistic insights into the recombination dynamics within integron cassette arrays. They found integrons with gentamicin-resistance cassettes both in first and last position, suggesting a ‘copy and paste’ mechanism of the integrase, rather than a ‘cut and paste’ one.
Duplicated gene cassettes indeed exist in integron-containing bacterial isolates from environmental and clinical samples, but they are likely rarer than the proposed preferential ‘copy and paste’ mechanism. This could be due to the suggested short-read sequencing bias. Another possibility could be that gene cassettes are excised from other integrons within the same cell, and then integrated into the first position.
In our opinion, whether integrase activity mechanistically leads to ‘copy and paste’ versus ‘cut and paste’ could only be resolved using experimental assays with a single integron, but we acknowledge that this is difficult to obtain. Even when integrons are located on the chromosome, multiple copies will be present just before cell division.
Finally, Souque et al. also addressed the question why the integrase enzyme is costly (Starikova et al., 2012; Lacotte et al., 2017). This has previously been linked to off-target integrase activity resulting in deleterious genetic rearrangements (Harms et al., 2013). The fact that most integrase-containing populations in this study rarely undergo genetic shuffeling suggests that off-target integrase activity is rare and that other not-mutually exclusive mechanisms could explain the costly nature of active integrases.
Understanding the evolutionary dynamics of these fascinating integrons and the benefits they provide to bacteria may help us on the quest of finding new treatment strategies that limit the evolution of antibiotic resistance.
References
-
Expression of antibiotic resistance genes in the integrated cassettes of integronsAntimicrobial Agents and Chemotherapy 39:155–162.https://doi.org/10.1128/AAC.39.1.155
-
Costly Class-1 integrons and the domestication of the the functional integraseMobile Genetic Elements 3:e24774.https://doi.org/10.4161/mge.24774
-
Class 1 integrons are low-cost structures in Escherichia coliThe ISME Journal 11:1535–1544.https://doi.org/10.1038/ismej.2017.38
Article and author information
Author details
Publication history
Copyright
© 2021, Johnsen et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,710
- views
-
- 244
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.
-
- Ecology
- Evolutionary Biology
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.