Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels as compared with therapy based on protease inhibitors

  1. Alexander O Pasternak  Is a corresponding author
  2. Jelmer Vroom
  3. Neeltje A Kootstra
  4. Ferdinand WNM Wit
  5. Marijn de Bruin
  6. Davide De Francesco
  7. Margreet Bakker
  8. Caroline A Sabin
  9. Alan Winston
  10. Jan M Prins
  11. Peter Reiss
  12. Ben Berkhout
  13. on behalf of The Co-morBidity in Relation to Aids (COBRA) Collaboration
  1. Amsterdam UMC, University of Amsterdam, Netherlands
  2. Radboud University Medical Center, Netherlands
  3. University College London, United Kingdom
  4. Imperial College London, United Kingdom
  5. Amsterdam UMC, University of Amsterdam, New Caledonia

Abstract

BACKGROUND: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress HIV replication. Here, we report the results of two cross-sectional studies that compared levels of cell-associated (CA) HIV markers between individuals receiving suppressive ART containing either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI).

METHODS: CA HIV unspliced RNA and total HIV DNA were quantified in two cohorts (n=100, n=124) of individuals treated with triple ART regimens consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) plus either a NNRTI or a PI. To compare CA HIV RNA and DNA levels between the regimens, we built multivariable models adjusting for age, gender, current and nadir CD4+ count, plasma viral load zenith, duration of virological suppression, NRTI backbone composition, low-level plasma HIV RNA detectability, and electronically-measured adherence to ART.

RESULTS: In both cohorts, levels of CA HIV RNA and DNA strongly correlated (rho=0.70 and rho=0.54) and both markers were lower in NNRTI-treated than in PI-treated individuals. In the multivariable analysis, CA RNA in both cohorts remained significantly reduced in NNRTI-treated individuals (padj=0.02 in both cohorts), with a similar but weaker association between the ART regimen and total HIV DNA (padj=0.048 and padj=0.10). No differences in CA HIV RNA or DNA levels were observed between individual NNRTIs or individual PIs, but CA HIV RNA was lower in individuals treated with either nevirapine or efavirenz, compared to PI-treated individuals.

CONCLUSIONS: All current classes of antiretroviral drugs only prevent infection of new cells but do not inhibit HIV RNA transcription in long-lived reservoir cells. Therefore, these differences in CA HIV RNA and DNA levels by treatment regimen suggest that NNRTIs are more potent in suppressing HIV residual replication than PIs, which may result in a smaller viral reservoir size.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Alexander O Pasternak

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    a.o.pasternak@amsterdamumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4097-4251
  2. Jelmer Vroom

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Neeltje A Kootstra

    Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9429-7754
  4. Ferdinand WNM Wit

    Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Marijn de Bruin

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Davide De Francesco

    Institute for Global Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Margreet Bakker

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Caroline A Sabin

    Institute for Global Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alan Winston

    Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jan M Prins

    Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, New Caledonia
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Reiss

    Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Berkhout

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

ZonMw (09120011910035)

  • Ben Berkhout

FP7 Health (305522)

  • Peter Reiss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The COBRA study was approved by the institutional review board of the Academic Medical Center (Medisch Ethische Toetsingscommissie, reference number NL 30802.018.09) and a UK Research Ethics Committee (REC) (reference number 13/LO/0584 Stanmore, London). All participants provided written informed consent. The AIMS study was approved by the institutional review board of the Academic Medical Center (protocol number NTR176). The trial is registered at https://www.isrctn.com (ISRCTN97730834). All participants provided written informed consent.

Copyright

© 2021, Pasternak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,112
    views
  • 149
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander O Pasternak
  2. Jelmer Vroom
  3. Neeltje A Kootstra
  4. Ferdinand WNM Wit
  5. Marijn de Bruin
  6. Davide De Francesco
  7. Margreet Bakker
  8. Caroline A Sabin
  9. Alan Winston
  10. Jan M Prins
  11. Peter Reiss
  12. Ben Berkhout
  13. on behalf of The Co-morBidity in Relation to Aids (COBRA) Collaboration
(2021)
Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels as compared with therapy based on protease inhibitors
eLife 10:e68174.
https://doi.org/10.7554/eLife.68174

Share this article

https://doi.org/10.7554/eLife.68174

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.

    1. Medicine
    2. Neuroscience
    Hyeonyoung Min, Yale Y Yang, Yunlei Yang
    Research Article

    It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.