Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels as compared with therapy based on protease inhibitors

  1. Alexander O Pasternak  Is a corresponding author
  2. Jelmer Vroom
  3. Neeltje A Kootstra
  4. Ferdinand WNM Wit
  5. Marijn de Bruin
  6. Davide De Francesco
  7. Margreet Bakker
  8. Caroline A Sabin
  9. Alan Winston
  10. Jan M Prins
  11. Peter Reiss
  12. Ben Berkhout
  13. on behalf of The Co-morBidity in Relation to Aids (COBRA) Collaboration
  1. Amsterdam UMC, University of Amsterdam, Netherlands
  2. Radboud University Medical Center, Netherlands
  3. University College London, United Kingdom
  4. Imperial College London, United Kingdom
  5. Amsterdam UMC, University of Amsterdam, New Caledonia

Abstract

BACKGROUND: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress HIV replication. Here, we report the results of two cross-sectional studies that compared levels of cell-associated (CA) HIV markers between individuals receiving suppressive ART containing either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI).

METHODS: CA HIV unspliced RNA and total HIV DNA were quantified in two cohorts (n=100, n=124) of individuals treated with triple ART regimens consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) plus either a NNRTI or a PI. To compare CA HIV RNA and DNA levels between the regimens, we built multivariable models adjusting for age, gender, current and nadir CD4+ count, plasma viral load zenith, duration of virological suppression, NRTI backbone composition, low-level plasma HIV RNA detectability, and electronically-measured adherence to ART.

RESULTS: In both cohorts, levels of CA HIV RNA and DNA strongly correlated (rho=0.70 and rho=0.54) and both markers were lower in NNRTI-treated than in PI-treated individuals. In the multivariable analysis, CA RNA in both cohorts remained significantly reduced in NNRTI-treated individuals (padj=0.02 in both cohorts), with a similar but weaker association between the ART regimen and total HIV DNA (padj=0.048 and padj=0.10). No differences in CA HIV RNA or DNA levels were observed between individual NNRTIs or individual PIs, but CA HIV RNA was lower in individuals treated with either nevirapine or efavirenz, compared to PI-treated individuals.

CONCLUSIONS: All current classes of antiretroviral drugs only prevent infection of new cells but do not inhibit HIV RNA transcription in long-lived reservoir cells. Therefore, these differences in CA HIV RNA and DNA levels by treatment regimen suggest that NNRTIs are more potent in suppressing HIV residual replication than PIs, which may result in a smaller viral reservoir size.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Alexander O Pasternak

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    a.o.pasternak@amsterdamumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4097-4251
  2. Jelmer Vroom

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Neeltje A Kootstra

    Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9429-7754
  4. Ferdinand WNM Wit

    Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Marijn de Bruin

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Davide De Francesco

    Institute for Global Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Margreet Bakker

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Caroline A Sabin

    Institute for Global Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alan Winston

    Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jan M Prins

    Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, New Caledonia
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Reiss

    Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Ben Berkhout

    Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

ZonMw (09120011910035)

  • Ben Berkhout

FP7 Health (305522)

  • Peter Reiss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The COBRA study was approved by the institutional review board of the Academic Medical Center (Medisch Ethische Toetsingscommissie, reference number NL 30802.018.09) and a UK Research Ethics Committee (REC) (reference number 13/LO/0584 Stanmore, London). All participants provided written informed consent. The AIMS study was approved by the institutional review board of the Academic Medical Center (protocol number NTR176). The trial is registered at https://www.isrctn.com (ISRCTN97730834). All participants provided written informed consent.

Copyright

© 2021, Pasternak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,109
    views
  • 149
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander O Pasternak
  2. Jelmer Vroom
  3. Neeltje A Kootstra
  4. Ferdinand WNM Wit
  5. Marijn de Bruin
  6. Davide De Francesco
  7. Margreet Bakker
  8. Caroline A Sabin
  9. Alan Winston
  10. Jan M Prins
  11. Peter Reiss
  12. Ben Berkhout
  13. on behalf of The Co-morBidity in Relation to Aids (COBRA) Collaboration
(2021)
Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels as compared with therapy based on protease inhibitors
eLife 10:e68174.
https://doi.org/10.7554/eLife.68174

Share this article

https://doi.org/10.7554/eLife.68174

Further reading

    1. Medicine
    2. Neuroscience
    Gansheng Tan, Anna L Huguenard ... Eric C Leuthardt
    Research Article

    Background:

    Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function.

    Methods:

    In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement.

    Results:

    We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen’s d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge.

    Conclusions:

    Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

    Funding:

    The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB).

    Clinical trial number:

    NCT04557618.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.