PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR

  1. Allen T Yu
  2. Carmen Berasain
  3. Sonam Bhatia
  4. Keith Rivera
  5. Bodu Liu
  6. Frank Rigo
  7. Darryl J Pappin
  8. David L Spector  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. University of Navarra, Spain
  3. Ionis Pharmaceutials, United States

Abstract

Hepatocellular carcinoma, the most common type of liver malignancy, is one of the most lethal forms of cancer. We identified a long non-coding RNA, Gm19705, that is over-expressed in hepatocellular carcinoma and mouse embryonic stem cells. We named this RNA Pluripotency and Hepatocyte Associated RNA Overexpressed in HCC, or PHAROH. Depletion of PHAROH impacts cell proliferation and migration, which can be rescued by ectopic expression of PHAROH. RNA-seq analysis of PHAROH knockouts revealed that a large number of genes with decreased expression contain a Myc motif in their promoter. MYC is decreased at the protein level, but not the mRNA level. RNA-antisense pulldown identified nucleolysin TIAR, a translational repressor, to bind to a 71-nt hairpin within PHAROH, sequestration of which increases MYC translation. In summary, our data suggest that PHAROH regulates MYC translation by sequestering TIAR and as such represents a potentially exciting diagnostic or therapeutic target in hepatocellular carcinoma.

Data availability

RNA-seq data has been uploaded to GEO: GSE167316

The following data sets were generated

Article and author information

Author details

  1. Allen T Yu

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Carmen Berasain

    Hepatology Program, University of Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  3. Sonam Bhatia

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0124-2621
  4. Keith Rivera

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  5. Bodu Liu

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Frank Rigo

    Antisense, Ionis Pharmaceutials, Carlsbad, United States
    Competing interests
    No competing interests declared.
  7. Darryl J Pappin

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  8. David L Spector

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    spector@cshl.edu
    Competing interests
    David L Spector, D.L.S. is a consultant to and receives research reagents from Ionis Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3614-4965

Funding

National Cancer Institute (5PO1CA013106-Project 3)

  • David L Spector

National Cancer Institute (5F31CA220997)

  • Allen T Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Ethics

Animal experimentation: Animal experimental protocols were approved (CEEA 062-16) and performed according to the guidelines of the Ethics Committee for Animal Testing of the University of Navarra.

Human subjects: The Human Research Review Committee of the University of Navarra (CEI 47/2015) approved the study and human samples were provided by the Biobank of the University of Navarra. The biobank obtained an informed consent and consent to publish from each patient and codified samples were provided to the researchers. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Samples were processed following standard operating procedures approved by the Ethical and Scientific Committees. Liver samples from healthy patients were collected from individuals with normal or minimal changes in the liver at surgery of digestive tumors or from percutaneous liver biopsy performed because of mild alterations of liver function. Samples for cirrhotic liver and HCC were obtained from patients undergoing partial hepatectomy and/or liver transplantation.

Version history

  1. Received: March 10, 2021
  2. Accepted: May 2, 2021
  3. Accepted Manuscript published: May 18, 2021 (version 1)
  4. Accepted Manuscript updated: May 20, 2021 (version 2)
  5. Version of Record published: May 28, 2021 (version 3)

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,471
    Page views
  • 223
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allen T Yu
  2. Carmen Berasain
  3. Sonam Bhatia
  4. Keith Rivera
  5. Bodu Liu
  6. Frank Rigo
  7. Darryl J Pappin
  8. David L Spector
(2021)
PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR
eLife 10:e68263.
https://doi.org/10.7554/eLife.68263

Share this article

https://doi.org/10.7554/eLife.68263

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Cancer Biology
    Carolyn M Jablonowski, Waise Quarni ... Jun Yang
    Research Article

    Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a ‘molecular glue’ that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.