PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR

  1. Allen T Yu
  2. Carmen Berasain
  3. Sonam Bhatia
  4. Keith Rivera
  5. Bodu Liu
  6. Frank Rigo
  7. Darryl J Pappin
  8. David L Spector  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Cima, University of Navarra, Spain
  3. Ionis Pharmaceutials, United States

Abstract

Hepatocellular carcinoma, the most common type of liver malignancy, is one of the most lethal forms of cancer. We identified a long non-coding RNA, Gm19705, that is over-expressed in hepatocellular carcinoma and mouse embryonic stem cells. We named this RNA Pluripotency and Hepatocyte Associated RNA Overexpressed in HCC, or PHAROH. Depletion of PHAROH impacts cell proliferation and migration, which can be rescued by ectopic expression of PHAROH. RNA-seq analysis of PHAROH knockouts revealed that a large number of genes with decreased expression contain a Myc motif in their promoter. MYC is decreased at the protein level, but not the mRNA level. RNA-antisense pulldown identified nucleolysin TIAR, a translational repressor, to bind to a 71-nt hairpin within PHAROH, sequestration of which increases MYC translation. In summary, our data suggest that PHAROH regulates MYC translation by sequestering TIAR and as such represents a potentially exciting diagnostic or therapeutic target in hepatocellular carcinoma.

Data availability

RNA-seq data has been uploaded to GEO: GSE167316

The following data sets were generated

Article and author information

Author details

  1. Allen T Yu

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Carmen Berasain

    Hepatology Program, Cima, University of Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  3. Sonam Bhatia

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0124-2621
  4. Keith Rivera

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  5. Bodu Liu

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Frank Rigo

    Antisense, Ionis Pharmaceutials, Carlsbad, United States
    Competing interests
    No competing interests declared.
  7. Darryl J Pappin

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  8. David L Spector

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    spector@cshl.edu
    Competing interests
    David L Spector, D.L.S. is a consultant to and receives research reagents from Ionis Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3614-4965

Funding

National Cancer Institute (5PO1CA013106-Project 3 and 5R35GM131833)

  • David L Spector

National Cancer Institute (5F31CA220997)

  • Allen T Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimental protocols were approved (CEEA 062-16) and performed according to the guidelines of the Ethics Committee for Animal Testing of the University of Navarra.

Human subjects: The Human Research Review Committee of the University of Navarra (CEI 47/2015) approved the study and human samples were provided by the Biobank of the University of Navarra. The biobank obtained an informed consent and consent to publish from each patient and codified samples were provided to the researchers. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Samples were processed following standard operating procedures approved by the Ethical and Scientific Committees. Liver samples from healthy patients were collected from individuals with normal or minimal changes in the liver at surgery of digestive tumors or from percutaneous liver biopsy performed because of mild alterations of liver function. Samples for cirrhotic liver and HCC were obtained from patients undergoing partial hepatectomy and/or liver transplantation.

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,554
    views
  • 233
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allen T Yu
  2. Carmen Berasain
  3. Sonam Bhatia
  4. Keith Rivera
  5. Bodu Liu
  6. Frank Rigo
  7. Darryl J Pappin
  8. David L Spector
(2021)
PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR
eLife 10:e68263.
https://doi.org/10.7554/eLife.68263

Share this article

https://doi.org/10.7554/eLife.68263

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Cancer Biology
    Anne Fajac, Iva Simeonova ... Franck Toledo
    Research Article

    The Trp53 gene encodes several isoforms of elusive biological significance. Here, we show that mice lacking the Trp53 alternatively spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in Trp53+/+Eμ-Myc males compared to Trp53ΔAS/ΔAS Eμ-Myc males, but also compared to Trp53+/+Eμ-Myc and Trp53ΔAS/ΔAS Eμ-Myc females. Pre-tumoral splenic cells from Trp53+/+Eμ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We identified Ackr4 as a p53 target gene whose p53-mediated transactivation is inhibited by estrogens, and as a male-specific factor of good prognosis relevant for murine Eμ-Myc-induced and human Burkitt lymphomas. Furthermore, the knockout of ACKR4 increased the chemokine-guided migration of Burkitt lymphoma cells. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven lymphomagenesis.