PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR

  1. Allen T Yu
  2. Carmen Berasain
  3. Sonam Bhatia
  4. Keith Rivera
  5. Bodu Liu
  6. Frank Rigo
  7. Darryl J Pappin
  8. David L Spector  Is a corresponding author
  1. Cold Spring Harbor Laboratory, United States
  2. Cima, University of Navarra, Spain
  3. Ionis Pharmaceutials, United States

Abstract

Hepatocellular carcinoma, the most common type of liver malignancy, is one of the most lethal forms of cancer. We identified a long non-coding RNA, Gm19705, that is over-expressed in hepatocellular carcinoma and mouse embryonic stem cells. We named this RNA Pluripotency and Hepatocyte Associated RNA Overexpressed in HCC, or PHAROH. Depletion of PHAROH impacts cell proliferation and migration, which can be rescued by ectopic expression of PHAROH. RNA-seq analysis of PHAROH knockouts revealed that a large number of genes with decreased expression contain a Myc motif in their promoter. MYC is decreased at the protein level, but not the mRNA level. RNA-antisense pulldown identified nucleolysin TIAR, a translational repressor, to bind to a 71-nt hairpin within PHAROH, sequestration of which increases MYC translation. In summary, our data suggest that PHAROH regulates MYC translation by sequestering TIAR and as such represents a potentially exciting diagnostic or therapeutic target in hepatocellular carcinoma.

Data availability

RNA-seq data has been uploaded to GEO: GSE167316

The following data sets were generated

Article and author information

Author details

  1. Allen T Yu

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Carmen Berasain

    Hepatology Program, Cima, University of Navarra, Pamplona, Spain
    Competing interests
    No competing interests declared.
  3. Sonam Bhatia

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0124-2621
  4. Keith Rivera

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  5. Bodu Liu

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Frank Rigo

    Antisense, Ionis Pharmaceutials, Carlsbad, United States
    Competing interests
    No competing interests declared.
  7. Darryl J Pappin

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  8. David L Spector

    Gene Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    spector@cshl.edu
    Competing interests
    David L Spector, D.L.S. is a consultant to and receives research reagents from Ionis Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3614-4965

Funding

National Cancer Institute (5PO1CA013106-Project 3 and 5R35GM131833)

  • David L Spector

National Cancer Institute (5F31CA220997)

  • Allen T Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimental protocols were approved (CEEA 062-16) and performed according to the guidelines of the Ethics Committee for Animal Testing of the University of Navarra.

Human subjects: The Human Research Review Committee of the University of Navarra (CEI 47/2015) approved the study and human samples were provided by the Biobank of the University of Navarra. The biobank obtained an informed consent and consent to publish from each patient and codified samples were provided to the researchers. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Samples were processed following standard operating procedures approved by the Ethical and Scientific Committees. Liver samples from healthy patients were collected from individuals with normal or minimal changes in the liver at surgery of digestive tumors or from percutaneous liver biopsy performed because of mild alterations of liver function. Samples for cirrhotic liver and HCC were obtained from patients undergoing partial hepatectomy and/or liver transplantation.

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,630
    views
  • 237
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allen T Yu
  2. Carmen Berasain
  3. Sonam Bhatia
  4. Keith Rivera
  5. Bodu Liu
  6. Frank Rigo
  7. Darryl J Pappin
  8. David L Spector
(2021)
PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR
eLife 10:e68263.
https://doi.org/10.7554/eLife.68263

Share this article

https://doi.org/10.7554/eLife.68263

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.