Niche partitioning facilitates coexistence of closely related honey bee gut bacteria

  1. Silvia Brochet
  2. Andrew Quinn
  3. Ruben AT Mars
  4. Nicolas Neuschwander
  5. Uwe Sauer
  6. Philipp Engel  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. ETH Zürich, Switzerland
  3. ETH Zurich, Switzerland

Abstract

Ecological processes underlying bacterial coexistence in the gut are not well understood. Here, we disentangled the effect of the host and the diet on the coexistence of four closely related Lactobacillus species colonizing the honey bee gut. We serially passaged the four species through gnotobiotic bees and in liquid cultures in the presence of either pollen (bee diet) or simple sugars. Although the four species engaged in negative interactions, they were able to stably coexist, both in vivo and in vitro. However, coexistence was only possible in the presence of pollen, and not in simple sugars, independent of the environment. Using metatranscriptomics and metabolomics, we found that the four species utilize different pollen-derived carbohydrate substrates indicating resource partitioning as the basis of coexistence. Our results show that despite longstanding host association, gut bacterial interactions can be recapitulated in vitro providing insights about bacterial coexistence when combined with in vivo experiments.

Data availability

The amplicon sequencing data and the RNA sequencing data are available under the NCBI Bioproject PRJNA700984 and the GEO record GSE166724 respectively.All data generated or analysed during this study are included in the manuscript and supporting files. Bacterial abundance data (CFUs) are included into Supplementary File 3, amplicon sequencing processed data are included into Supplementary File 4, RNA sequencing processed data, statistical analysis results (enrichment tests) and transcript per million data are included into Supplementary File 5-9, metabolomics analysis data are included into Supplementary File 10. All differential expression analysis results of this study are included in Supplementary File 11.

The following data sets were generated

Article and author information

Author details

  1. Silvia Brochet

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6443-185X
  2. Andrew Quinn

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1401-1053
  3. Ruben AT Mars

    Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Neuschwander

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Uwe Sauer

    Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5923-0770
  6. Philipp Engel

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    For correspondence
    philipp.engel@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4678-6200

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_160345)

  • Philipp Engel

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_179487)

  • Andrew Quinn
  • Nicolas Neuschwander
  • Philipp Engel

H2020 European Research Council (714804)

  • Silvia Brochet
  • Philipp Engel

NCCR Microbiomes (51NF40_180575)

  • Philipp Engel

Human Frontier Science Program (RGY0077/2016)

  • Philipp Engel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Brochet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,082
    views
  • 614
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Silvia Brochet
  2. Andrew Quinn
  3. Ruben AT Mars
  4. Nicolas Neuschwander
  5. Uwe Sauer
  6. Philipp Engel
(2021)
Niche partitioning facilitates coexistence of closely related honey bee gut bacteria
eLife 10:e68583.
https://doi.org/10.7554/eLife.68583

Share this article

https://doi.org/10.7554/eLife.68583

Further reading

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.