Multi-syndrome, multi-gene risk modeling for individuals with a family history of cancer with the novel R package PanelPRO

  1. Gavin Lee
  2. Jane W Liang
  3. Qing Zhang
  4. Theodore Huang
  5. Christine Choirat
  6. Giovanni Parmigani
  7. Danielle Braun  Is a corresponding author
  1. ETH Zürich and EPFL, Switzerland
  2. Harvard T.H. Chan School of Public Health, United States
  3. Broad Institute of MIT and Harvard, United States

Abstract

Identifying individuals who are at high risk of cancer due to inherited germline mutations is critical for effective implementation of personalized prevention strategies. Most existing models focus on a few specific syndromes; however recent evidence from multi-gene panel testing shows that many syndromes are overlapping, motivating the development of models that incorporate family history on several cancers and predict mutations for a comprehensive panel of genes. We present PanelPRO, a new, open-source R package providing a fast, flexible back-end for multi-gene, multi-cancer risk modeling with pedigree data. It includes a customizable database with default parameter values estimated from published studies and allows users to select any combinations of genes and cancers for their models, including well-established single syndrome BayesMendel models (BRCAPRO and MMRPRO). This leads to more accurate risk predictions and ultimately has a high impact on prevention strategies for cancer and clinical decision making. The package is available for download for research purposes at https://projects.iq.harvard.edu/bayesmendel/panelpro.

Data availability

This manuscript introduces PanelPRO, an innovative multi-gene multi-cancer Mendelian model. Software for this model, including the model parameter database, is available to download for research use; https://projects.iq.harvard.edu/bayesmendel/panelpro

Article and author information

Author details

  1. Gavin Lee

    Swiss Data Science Center, ETH Zürich and EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2659-1163
  2. Jane W Liang

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qing Zhang

    Getz Laboratory, Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Theodore Huang

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christine Choirat

    Swiss Data Science Center, ETH Zürich and EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Giovanni Parmigani

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Danielle Braun

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    For correspondence
    bmendel@jimmy.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5177-8598

Funding

National Institutes of Health (5T32CA009337)

  • Jane W Liang
  • Theodore Huang

National Institutes of Health (2T32CA009001)

  • Theodore Huang

National Institutes of Health (4P30CA006516)

  • Giovanni Parmigani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Goutham Narla, University of Michigan, United States

Publication history

  1. Received: March 24, 2021
  2. Accepted: August 16, 2021
  3. Accepted Manuscript published: August 18, 2021 (version 1)
  4. Version of Record published: September 28, 2021 (version 2)
  5. Version of Record updated: November 15, 2022 (version 3)

Copyright

© 2021, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,096
    Page views
  • 107
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gavin Lee
  2. Jane W Liang
  3. Qing Zhang
  4. Theodore Huang
  5. Christine Choirat
  6. Giovanni Parmigani
  7. Danielle Braun
(2021)
Multi-syndrome, multi-gene risk modeling for individuals with a family history of cancer with the novel R package PanelPRO
eLife 10:e68699.
https://doi.org/10.7554/eLife.68699

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Matthew Roberts, Julia Ogden ... Carlos Lopez-Garcia
    Tools and Resources Updated

    Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-group comparisons, interrogation of genes of interests, and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Mark Borris D Aldonza, Junghwa Cha ... Yoosik Kim
    Research Article

    Cancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post- translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In cancer cell cultures, xenograft mouse models, and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycoproteomes identified fucosylation of the antioxidant PON1 as a critical component of the therapy-induced secretome (TIS). N-glycosylation of TIS and target core fucosylation of PON1 are mediated by the fucose salvage-FUT8-SLC35C1 axis with PON3 directly modulating GDP-Fuc transfer on PON1 scaffolds. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Global and PON1-specific secretome de-N-glycosylation both limited the expansion of resistant clones in a tumor regression model. We defined the resistance-associated transcription factors (TFs) and genes modulated by the N-glycosylated TIS via a focused and transcriptome-wide analyses. These genes characterize the oxidative stress, inflammatory niche, and unfolded protein response as important factors for this modulation. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.