Multi-syndrome, multi-gene risk modeling for individuals with a family history of cancer with the novel R package PanelPRO

  1. Gavin Lee
  2. Jane W Liang
  3. Qing Zhang
  4. Theodore Huang
  5. Christine Choirat
  6. Giovanni Parmigani
  7. Danielle Braun  Is a corresponding author
  1. ETH Zürich and EPFL, Switzerland
  2. Harvard T.H. Chan School of Public Health, United States
  3. Broad Institute of MIT and Harvard, United States

Abstract

Identifying individuals who are at high risk of cancer due to inherited germline mutations is critical for effective implementation of personalized prevention strategies. Most existing models focus on a few specific syndromes; however recent evidence from multi-gene panel testing shows that many syndromes are overlapping, motivating the development of models that incorporate family history on several cancers and predict mutations for a comprehensive panel of genes. We present PanelPRO, a new, open-source R package providing a fast, flexible back-end for multi-gene, multi-cancer risk modeling with pedigree data. It includes a customizable database with default parameter values estimated from published studies and allows users to select any combinations of genes and cancers for their models, including well-established single syndrome BayesMendel models (BRCAPRO and MMRPRO). This leads to more accurate risk predictions and ultimately has a high impact on prevention strategies for cancer and clinical decision making. The package is available for download for research purposes at https://projects.iq.harvard.edu/bayesmendel/panelpro.

Data availability

This manuscript introduces PanelPRO, an innovative multi-gene multi-cancer Mendelian model. Software for this model, including the model parameter database, is available to download for research use; https://projects.iq.harvard.edu/bayesmendel/panelpro

Article and author information

Author details

  1. Gavin Lee

    Swiss Data Science Center, ETH Zürich and EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2659-1163
  2. Jane W Liang

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qing Zhang

    Getz Laboratory, Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Theodore Huang

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christine Choirat

    Swiss Data Science Center, ETH Zürich and EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Giovanni Parmigani

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Danielle Braun

    Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States
    For correspondence
    bmendel@jimmy.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5177-8598

Funding

National Institutes of Health (5T32CA009337)

  • Jane W Liang
  • Theodore Huang

National Institutes of Health (2T32CA009001)

  • Theodore Huang

National Institutes of Health (4P30CA006516)

  • Giovanni Parmigani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Goutham Narla, University of Michigan, United States

Version history

  1. Received: March 24, 2021
  2. Accepted: August 16, 2021
  3. Accepted Manuscript published: August 18, 2021 (version 1)
  4. Version of Record published: September 28, 2021 (version 2)
  5. Version of Record updated: November 15, 2022 (version 3)

Copyright

© 2021, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,357
    views
  • 144
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gavin Lee
  2. Jane W Liang
  3. Qing Zhang
  4. Theodore Huang
  5. Christine Choirat
  6. Giovanni Parmigani
  7. Danielle Braun
(2021)
Multi-syndrome, multi-gene risk modeling for individuals with a family history of cancer with the novel R package PanelPRO
eLife 10:e68699.
https://doi.org/10.7554/eLife.68699

Share this article

https://doi.org/10.7554/eLife.68699

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.