Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability and resistance to fibrinolysis

  1. Helen McPherson
  2. Cedric Duval
  3. Stephen R Baker
  4. Matthew S Hindle
  5. Lih T Cheah
  6. Nathan L Asquith
  7. Marco M Domingues
  8. Victoria C Ridger
  9. Simon DA Connell
  10. Khalid Naseem
  11. Helen Philippou
  12. Ramzi A Ajjan
  13. Robert Ariens  Is a corresponding author
  1. University of Leeds, United Kingdom
  2. Wake Forest University, United States
  3. Harvard Medical School, United States
  4. Universidade de Lisboa, Portugal
  5. University of Sheffield, United Kingdom
  6. University of Leeds, United States

Abstract

Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.

Data availability

The source data for Figures 1 B-F, figure 2 B and D, figure 3 B, figure 4, figure 5 B, C and D and figure 6 A-C and D-F and supplementary Figures 1 supplement 1, figures 4 supplement 1 and figures 5 supplement 1 and 2 and figures 6 supplement 1 are made available as separate source data files.

Article and author information

Author details

  1. Helen McPherson

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3519-498X
  2. Cedric Duval

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen R Baker

    Department of Physics, Wake Forest University, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3147-4925
  4. Matthew S Hindle

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lih T Cheah

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan L Asquith

    Division of Hematology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Marco M Domingues

    Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria C Ridger

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon DA Connell

    Molecular and Nanoscale Physics Group, University of Leeds, Leeds, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Khalid Naseem

    Discovery and Translational Science Department, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Helen Philippou

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Ramzi A Ajjan

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1636-3725
  13. Robert Ariens

    Discovery anTranslational Science Department, University of Leeds, Leeds, United Kingdom
    For correspondence
    R.A.S.Ariens@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6310-5745

Funding

British Heart Foundation (RG/13/3/30104)

  • Helen McPherson
  • Cedric Duval
  • Stephen R Baker
  • Marco M Domingues
  • Victoria C Ridger
  • Simon DA Connell
  • Helen Philippou
  • Ramzi A Ajjan
  • Robert Ariens

British Heart Foundation (RG/18/11/34036)

  • Helen McPherson
  • Cedric Duval
  • Stephen R Baker
  • Victoria C Ridger
  • Simon DA Connell
  • Helen Philippou
  • Ramzi A Ajjan
  • Robert Ariens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jameel Iqbal, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: Procedures were performed according to accepted standards of humane animal care, approved by the ethical review committee at the University of Leeds, and conducted under license (P144DD0D6) from the United Kingdom Home Office.

Version history

  1. Received: March 24, 2021
  2. Preprint posted: May 8, 2021 (view preprint)
  3. Accepted: October 4, 2021
  4. Accepted Manuscript published: October 11, 2021 (version 1)
  5. Accepted Manuscript updated: October 15, 2021 (version 2)
  6. Version of Record published: October 28, 2021 (version 3)
  7. Version of Record updated: January 7, 2022 (version 4)

Copyright

© 2021, McPherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,487
    Page views
  • 207
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen McPherson
  2. Cedric Duval
  3. Stephen R Baker
  4. Matthew S Hindle
  5. Lih T Cheah
  6. Nathan L Asquith
  7. Marco M Domingues
  8. Victoria C Ridger
  9. Simon DA Connell
  10. Khalid Naseem
  11. Helen Philippou
  12. Ramzi A Ajjan
  13. Robert Ariens
(2021)
Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability and resistance to fibrinolysis
eLife 10:e68761.
https://doi.org/10.7554/eLife.68761

Share this article

https://doi.org/10.7554/eLife.68761

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.