Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability and resistance to fibrinolysis

  1. Helen McPherson
  2. Cedric Duval
  3. Stephen R Baker
  4. Matthew S Hindle
  5. Lih T Cheah
  6. Nathan L Asquith
  7. Marco M Domingues
  8. Victoria C Ridger
  9. Simon DA Connell
  10. Khalid Naseem
  11. Helen Philippou
  12. Ramzi A Ajjan
  13. Robert AS Ariens  Is a corresponding author
  1. University of Leeds, United Kingdom
  2. Wake Forest University, United States
  3. Harvard Medical School, United States
  4. Universidade de Lisboa, Portugal
  5. University of Sheffield, United Kingdom
  6. University of Leeds, United States

Abstract

Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.

Data availability

The source data for Figures 1 B-F, figure 2 B and D, figure 3 B, figure 4, figure 5 B, C and D and figure 6 A-C and D-F and supplementary Figures 1 supplement 1, figures 4 supplement 1 and figures 5 supplement 1 and 2 and figures 6 supplement 1 are made available as separate source data files.

Article and author information

Author details

  1. Helen McPherson

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3519-498X
  2. Cedric Duval

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen R Baker

    Department of Physics, Wake Forest University, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3147-4925
  4. Matthew S Hindle

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lih T Cheah

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan L Asquith

    Division of Hematology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Marco M Domingues

    Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria C Ridger

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon DA Connell

    Molecular and Nanoscale Physics Group, University of Leeds, Leeds, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Khalid Naseem

    Discovery and Translational Science Department, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Helen Philippou

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Ramzi A Ajjan

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1636-3725
  13. Robert AS Ariens

    Discovery anTranslational Science Department, University of Leeds, Leeds, United Kingdom
    For correspondence
    R.A.S.Ariens@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6310-5745

Funding

British Heart Foundation (RG/13/3/30104)

  • Helen McPherson
  • Cedric Duval
  • Stephen R Baker
  • Marco M Domingues
  • Victoria C Ridger
  • Simon DA Connell
  • Helen Philippou
  • Ramzi A Ajjan
  • Robert Ariens

British Heart Foundation (RG/18/11/34036)

  • Helen McPherson
  • Cedric Duval
  • Stephen R Baker
  • Victoria C Ridger
  • Simon DA Connell
  • Helen Philippou
  • Ramzi A Ajjan
  • Robert Ariens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures were performed according to accepted standards of humane animal care, approved by the ethical review committee at the University of Leeds, and conducted under license (P144DD0D6) from the United Kingdom Home Office.

Copyright

© 2021, McPherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,774
    views
  • 238
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen McPherson
  2. Cedric Duval
  3. Stephen R Baker
  4. Matthew S Hindle
  5. Lih T Cheah
  6. Nathan L Asquith
  7. Marco M Domingues
  8. Victoria C Ridger
  9. Simon DA Connell
  10. Khalid Naseem
  11. Helen Philippou
  12. Ramzi A Ajjan
  13. Robert AS Ariens
(2021)
Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability and resistance to fibrinolysis
eLife 10:e68761.
https://doi.org/10.7554/eLife.68761

Share this article

https://doi.org/10.7554/eLife.68761

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.