Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability and resistance to fibrinolysis

  1. Helen McPherson
  2. Cedric Duval
  3. Stephen R Baker
  4. Matthew S Hindle
  5. Lih T Cheah
  6. Nathan L Asquith
  7. Marco M Domingues
  8. Victoria C Ridger
  9. Simon DA Connell
  10. Khalid Naseem
  11. Helen Philippou
  12. Ramzi A Ajjan
  13. Robert AS Ariens  Is a corresponding author
  1. University of Leeds, United Kingdom
  2. Wake Forest University, United States
  3. Harvard Medical School, United States
  4. Universidade de Lisboa, Portugal
  5. University of Sheffield, United Kingdom
  6. University of Leeds, United States

Abstract

Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.

Data availability

The source data for Figures 1 B-F, figure 2 B and D, figure 3 B, figure 4, figure 5 B, C and D and figure 6 A-C and D-F and supplementary Figures 1 supplement 1, figures 4 supplement 1 and figures 5 supplement 1 and 2 and figures 6 supplement 1 are made available as separate source data files.

Article and author information

Author details

  1. Helen McPherson

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3519-498X
  2. Cedric Duval

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen R Baker

    Department of Physics, Wake Forest University, Winston Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3147-4925
  4. Matthew S Hindle

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lih T Cheah

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan L Asquith

    Division of Hematology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Marco M Domingues

    Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria C Ridger

    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Simon DA Connell

    Molecular and Nanoscale Physics Group, University of Leeds, Leeds, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Khalid Naseem

    Discovery and Translational Science Department, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Helen Philippou

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Ramzi A Ajjan

    Discovery and Translational Science Department, Leeds Institute of Cariovasular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1636-3725
  13. Robert AS Ariens

    Discovery anTranslational Science Department, University of Leeds, Leeds, United Kingdom
    For correspondence
    R.A.S.Ariens@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6310-5745

Funding

British Heart Foundation (RG/13/3/30104)

  • Helen McPherson
  • Cedric Duval
  • Stephen R Baker
  • Marco M Domingues
  • Victoria C Ridger
  • Simon DA Connell
  • Helen Philippou
  • Ramzi A Ajjan
  • Robert Ariens

British Heart Foundation (RG/18/11/34036)

  • Helen McPherson
  • Cedric Duval
  • Stephen R Baker
  • Victoria C Ridger
  • Simon DA Connell
  • Helen Philippou
  • Ramzi A Ajjan
  • Robert Ariens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures were performed according to accepted standards of humane animal care, approved by the ethical review committee at the University of Leeds, and conducted under license (P144DD0D6) from the United Kingdom Home Office.

Reviewing Editor

  1. Jameel Iqbal, Icahn School of Medicine at Mount Sinai, United States

Version history

  1. Received: March 24, 2021
  2. Preprint posted: May 8, 2021 (view preprint)
  3. Accepted: October 4, 2021
  4. Accepted Manuscript published: October 11, 2021 (version 1)
  5. Accepted Manuscript updated: October 15, 2021 (version 2)
  6. Version of Record published: October 28, 2021 (version 3)
  7. Version of Record updated: January 7, 2022 (version 4)

Copyright

© 2021, McPherson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,455
    Page views
  • 204
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen McPherson
  2. Cedric Duval
  3. Stephen R Baker
  4. Matthew S Hindle
  5. Lih T Cheah
  6. Nathan L Asquith
  7. Marco M Domingues
  8. Victoria C Ridger
  9. Simon DA Connell
  10. Khalid Naseem
  11. Helen Philippou
  12. Ramzi A Ajjan
  13. Robert AS Ariens
(2021)
Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability and resistance to fibrinolysis
eLife 10:e68761.
https://doi.org/10.7554/eLife.68761

Share this article

https://doi.org/10.7554/eLife.68761

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristian Davidsen, Jonathan S Marvin ... Lucas B Sullivan
    Research Article

    Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

    1. Cell Biology
    2. Immunology and Inflammation
    Chinky Shiu Chen Liu, Tithi Mandal ... Dipyaman Ganguly
    Research Article

    T cells are crucial for efficient antigen-specific immune responses and thus their migration within the body, to inflamed tissues from circulating blood or to secondary lymphoid organs, plays a very critical role. T cell extravasation in inflamed tissues depends on chemotactic cues and interaction between endothelial adhesion molecules and cellular integrins. A migrating T cell is expected to sense diverse external and membrane-intrinsic mechano-physical cues, but molecular mechanisms of such mechanosensing in cell migration are not established. We explored if the professional mechanosensor Piezo1 plays any role during integrin-dependent chemotaxis of human T cells. We found that deficiency of Piezo1 in human T cells interfered with integrin-dependent cellular motility on ICAM-1-coated surface. Piezo1 recruitment at the leading edge of moving T cells is dependent on and follows focal adhesion formation at the leading edge and local increase in membrane tension upon chemokine receptor activation. Piezo1 recruitment and activation, followed by calcium influx and calpain activation, in turn, are crucial for the integrin LFA1 (CD11a/CD18) recruitment at the leading edge of the chemotactic human T cells. Thus, we find that Piezo1 activation in response to local mechanical cues constitutes a membrane-intrinsic component of the ‘outside-in’ signaling in human T cells, migrating in response to chemokines, that mediates integrin recruitment to the leading edge.