Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke

  1. Annie R Bice
  2. Qingli Xiao
  3. Justin Kong
  4. Ping Yan
  5. Zachary Pollack Rosenthal
  6. Andrew W Kraft
  7. Karen P Smith
  8. Tadeusz Wieloch
  9. Jin-Moo Lee
  10. Joseph P Culver
  11. Adam Q Bauer  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. Washington University School of Medicine, United States
  3. Lund University, Sweden

Abstract

Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging (OISI) to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally-distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for therapeutic intervention after focal ischemia.

Data availability

Data reported in Figures 1, 6, 7 are publicly available:Fig. 1: https://figshare.com/articles/dataset/Cylinder_Rearing_Scores/19773487Fig. 6: https://figshare.com/articles/dataset/Neuroimaging_Data_Pre_Post_Stroke_for_26-03-2021-RA-eLife-68852/19773244Fig. 7: https://figshare.com/articles/dataset/RT-PCR_Data/19773364Data reported in Figures 2, 3, 4, 5 are unavailable due to technical issues with storage hard drives.Analysis code is available at https://github.com/BauerLabCodebase

Article and author information

Author details

  1. Annie R Bice

    Department of Radiology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qingli Xiao

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin Kong

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ping Yan

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zachary Pollack Rosenthal

    Department of Neurology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8787-0858
  6. Andrew W Kraft

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5168-3986
  7. Karen P Smith

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tadeusz Wieloch

    Department of Clinical Sciences, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Jin-Moo Lee

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joseph P Culver

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Adam Q Bauer

    Department of Radiology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    aqbauer@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8364-3209

Funding

National Institutes of Health (R01NS102870)

  • Adam Q Bauer

National Institutes of Health (F31NS103275)

  • Zachary Pollack Rosenthal

McDonnell Center for Systems Neuroscience

  • Adam Q Bauer

The Alborada Trust

  • Tadeusz Wieloch

The Wachtmeister Foundation

  • Tadeusz Wieloch

Swedish Research Council

  • Tadeusz Wieloch

National Institutes of Health (K25NS083754)

  • Adam Q Bauer

National Institutes of Health (R37NS110699)

  • Jin-Moo Lee

National Institutes of Health (R01NS084028)

  • Jin-Moo Lee

National Institutes of Health (R01NS094692)

  • Jin-Moo Lee

National Institutes of Health (R01NS078223)

  • Joseph P Culver

National Institutes of Health (P01NS080675)

  • Joseph P Culver

National Institutes of Health (R01NS099429)

  • Joseph P Culver

National Institutes of Health (F31NS089135)

  • Andrew W Kraft

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mackenzie W Mathis, EPFL, Switzerland

Ethics

Animal experimentation: All procedures described below were approved by theWashington University Animal Studies Committee in compliance with theAmerican Association for Accreditation of Laboratory Animal Care guidelines (Protocol #20-0022)

Version history

  1. Received: March 27, 2021
  2. Preprint posted: May 2, 2021 (view preprint)
  3. Accepted: June 14, 2022
  4. Accepted Manuscript published: June 20, 2022 (version 1)
  5. Version of Record published: July 28, 2022 (version 2)

Copyright

© 2022, Bice et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,098
    Page views
  • 285
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annie R Bice
  2. Qingli Xiao
  3. Justin Kong
  4. Ping Yan
  5. Zachary Pollack Rosenthal
  6. Andrew W Kraft
  7. Karen P Smith
  8. Tadeusz Wieloch
  9. Jin-Moo Lee
  10. Joseph P Culver
  11. Adam Q Bauer
(2022)
Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke
eLife 11:e68852.
https://doi.org/10.7554/eLife.68852

Share this article

https://doi.org/10.7554/eLife.68852

Further reading

    1. Neuroscience
    Harry Clark, Matthew F Nolan
    Research Article

    Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.