Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke

  1. Annie R Bice
  2. Qingli Xiao
  3. Justin Kong
  4. Ping Yan
  5. Zachary Pollack Rosenthal
  6. Andrew W Kraft
  7. Karen P Smith
  8. Tadeusz Wieloch
  9. Jin-Moo Lee
  10. Joseph P Culver
  11. Adam Q Bauer  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. Washington University School of Medicine, United States
  3. Lund University, Sweden

Abstract

Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging (OISI) to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally-distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for therapeutic intervention after focal ischemia.

Data availability

Data reported in Figures 1, 6, 7 are publicly available:Fig. 1: https://figshare.com/articles/dataset/Cylinder_Rearing_Scores/19773487Fig. 6: https://figshare.com/articles/dataset/Neuroimaging_Data_Pre_Post_Stroke_for_26-03-2021-RA-eLife-68852/19773244Fig. 7: https://figshare.com/articles/dataset/RT-PCR_Data/19773364Data reported in Figures 2, 3, 4, 5 are unavailable due to technical issues with storage hard drives.Analysis code is available at https://github.com/BauerLabCodebase

Article and author information

Author details

  1. Annie R Bice

    Department of Radiology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qingli Xiao

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin Kong

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ping Yan

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zachary Pollack Rosenthal

    Department of Neurology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8787-0858
  6. Andrew W Kraft

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5168-3986
  7. Karen P Smith

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tadeusz Wieloch

    Department of Clinical Sciences, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Jin-Moo Lee

    Department of Neurology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joseph P Culver

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Adam Q Bauer

    Department of Radiology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    aqbauer@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8364-3209

Funding

National Institutes of Health (R01NS102870)

  • Adam Q Bauer

National Institutes of Health (F31NS103275)

  • Zachary Pollack Rosenthal

McDonnell Center for Systems Neuroscience

  • Adam Q Bauer

The Alborada Trust

  • Tadeusz Wieloch

The Wachtmeister Foundation

  • Tadeusz Wieloch

Swedish Research Council

  • Tadeusz Wieloch

National Institutes of Health (K25NS083754)

  • Adam Q Bauer

National Institutes of Health (R37NS110699)

  • Jin-Moo Lee

National Institutes of Health (R01NS084028)

  • Jin-Moo Lee

National Institutes of Health (R01NS094692)

  • Jin-Moo Lee

National Institutes of Health (R01NS078223)

  • Joseph P Culver

National Institutes of Health (P01NS080675)

  • Joseph P Culver

National Institutes of Health (R01NS099429)

  • Joseph P Culver

National Institutes of Health (F31NS089135)

  • Andrew W Kraft

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures described below were approved by theWashington University Animal Studies Committee in compliance with theAmerican Association for Accreditation of Laboratory Animal Care guidelines (Protocol #20-0022)

Copyright

© 2022, Bice et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,394
    views
  • 322
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.68852

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.