Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome

  1. Anitha P Govind
  2. Okunola Jeyifous  Is a corresponding author
  3. Theron A Russell
  4. Zola Yi
  5. Aubrey V Weigel
  6. Abhijit Ramaprasad
  7. Luke Newell
  8. William Ramos
  9. Fernando M Valbuena
  10. Jason C Casler
  11. Jing-Zhi Yan
  12. Benjamin S Glick
  13. Geoffrey T Swanson
  14. Jennifer Lippincott-Schwartz  Is a corresponding author
  15. William N Green  Is a corresponding author
  1. University of Chicago, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. The University of Chicago, United States
  4. Northwestern University, Feinberg School of Medicine, United States

Abstract

Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with ER exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway, or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction and disease.

Data availability

Source data files for all quantitative data presented in the current study have been deposited at Dryad. These contain raw data values, statistical summaries, and raw gels for panels in Figs 1, 2, 5, 6, 7, 8, and supplemental figures, figure 1-figure supplement 2, figure 2-figure supplement 2, figure 4-figure supplements 1 and 2, and figure 7-figure supplement 2. The files can be accessed via Dryad (doi:10.5061/dryad.qjq2bvqg3):

The following data sets were generated

Article and author information

Author details

  1. Anitha P Govind

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5890-2395
  2. Okunola Jeyifous

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    ojeyifou@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4176-4694
  3. Theron A Russell

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zola Yi

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aubrey V Weigel

    Lippincott-Schwartz Lab, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1694-4420
  6. Abhijit Ramaprasad

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luke Newell

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. William Ramos

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Fernando M Valbuena

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jason C Casler

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9742-9978
  11. Jing-Zhi Yan

    Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Benjamin S Glick

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7921-1374
  13. Geoffrey T Swanson

    Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jennifer Lippincott-Schwartz

    Lippincott-Schwartz Lab, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    lippincottschwartzj@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8601-3501
  15. William N Green

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    wgreen@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2167-1391

Funding

National Institutes of Health (DA035430)

  • William N Green

National Institutes of Health (DA044760)

  • William N Green

National Institutes of Health (DA043361)

  • William N Green

National Institutes of Health (GM104010)

  • Benjamin S Glick

National Institutes of Health (GM007183)

  • Fernando M Valbuena

Peter F McManus Foundation

  • William N Green

Howard Hughes Medical Institute

  • Jennifer Lippincott-Schwartz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the University of Chicago Institutional Animal Care and Use Committee (protocol #72016) and are in accordance with the recommendations of the Panel on Euthanasia of the American Veterinary Medical Association. Strict adherence to AVMA guidelines was followed to prevent pain and suffering of animals.

Copyright

© 2021, Govind et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,284
    views
  • 500
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anitha P Govind
  2. Okunola Jeyifous
  3. Theron A Russell
  4. Zola Yi
  5. Aubrey V Weigel
  6. Abhijit Ramaprasad
  7. Luke Newell
  8. William Ramos
  9. Fernando M Valbuena
  10. Jason C Casler
  11. Jing-Zhi Yan
  12. Benjamin S Glick
  13. Geoffrey T Swanson
  14. Jennifer Lippincott-Schwartz
  15. William N Green
(2021)
Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome
eLife 10:e68910.
https://doi.org/10.7554/eLife.68910

Share this article

https://doi.org/10.7554/eLife.68910

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.