Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome

  1. Anitha P Govind
  2. Okunola Jeyifous  Is a corresponding author
  3. Theron A Russell
  4. Zola Yi
  5. Aubrey V Weigel
  6. Abhijit Ramaprasad
  7. Luke Newell
  8. William Ramos
  9. Fernando M Valbuena
  10. Jason C Casler
  11. Jing-Zhi Yan
  12. Benjamin S Glick
  13. Geoffrey T Swanson
  14. Jennifer Lippincott-Schwartz  Is a corresponding author
  15. William N Green  Is a corresponding author
  1. University of Chicago, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. The University of Chicago, United States
  4. Northwestern University, Feinberg School of Medicine, United States

Abstract

Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with ER exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway, or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction and disease.

Data availability

Source data files for all quantitative data presented in the current study have been deposited at Dryad. These contain raw data values, statistical summaries, and raw gels for panels in Figs 1, 2, 5, 6, 7, 8, and supplemental figures, figure 1-figure supplement 2, figure 2-figure supplement 2, figure 4-figure supplements 1 and 2, and figure 7-figure supplement 2. The files can be accessed via Dryad (doi:10.5061/dryad.qjq2bvqg3):

The following data sets were generated

Article and author information

Author details

  1. Anitha P Govind

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5890-2395
  2. Okunola Jeyifous

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    ojeyifou@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4176-4694
  3. Theron A Russell

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zola Yi

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Aubrey V Weigel

    Lippincott-Schwartz Lab, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1694-4420
  6. Abhijit Ramaprasad

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luke Newell

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. William Ramos

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Fernando M Valbuena

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jason C Casler

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9742-9978
  11. Jing-Zhi Yan

    Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Benjamin S Glick

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7921-1374
  13. Geoffrey T Swanson

    Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jennifer Lippincott-Schwartz

    Lippincott-Schwartz Lab, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    lippincottschwartzj@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8601-3501
  15. William N Green

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    wgreen@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2167-1391

Funding

National Institutes of Health (DA035430)

  • William N Green

National Institutes of Health (DA044760)

  • William N Green

National Institutes of Health (DA043361)

  • William N Green

National Institutes of Health (GM104010)

  • Benjamin S Glick

National Institutes of Health (GM007183)

  • Fernando M Valbuena

Peter F McManus Foundation

  • William N Green

Howard Hughes Medical Institute

  • Jennifer Lippincott-Schwartz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the University of Chicago Institutional Animal Care and Use Committee (protocol #72016) and are in accordance with the recommendations of the Panel on Euthanasia of the American Veterinary Medical Association. Strict adherence to AVMA guidelines was followed to prevent pain and suffering of animals.

Copyright

© 2021, Govind et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,389
    views
  • 518
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anitha P Govind
  2. Okunola Jeyifous
  3. Theron A Russell
  4. Zola Yi
  5. Aubrey V Weigel
  6. Abhijit Ramaprasad
  7. Luke Newell
  8. William Ramos
  9. Fernando M Valbuena
  10. Jason C Casler
  11. Jing-Zhi Yan
  12. Benjamin S Glick
  13. Geoffrey T Swanson
  14. Jennifer Lippincott-Schwartz
  15. William N Green
(2021)
Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome
eLife 10:e68910.
https://doi.org/10.7554/eLife.68910

Share this article

https://doi.org/10.7554/eLife.68910

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.