Within-host evolutionary dynamics of seasonal and pandemic human influenza A viruses in young children
Abstract
The evolution of influenza viruses is fundamentally shaped by within-host processes. However, the within-host evolutionary dynamics of influenza viruses remain incompletely understood, in part because most studies have focused on infections in healthy adults based on single timepoint data. Here, we analysed the within-host evolution of 82 longitudinally-sampled individuals, mostly young children, infected with A/H1N1pdm09 or A/H3N2 viruses between 2007 and 2009. For A/H1N1pdm09 infections during the 2009 pandemic, nonsynonymous minority variants were more prevalent than synonymous ones. For A/H3N2 viruses in young children, early infection was dominated by purifying selection. As these infections progressed, nonsynonymous variants typically increased in frequency even when within-host virus titres decreased. Unlike the short-lived infections of adults where de novo within-host variants are rare, longer infections in young children allow for the maintenance of virus diversity via mutation-selection balance creating potentially important opportunities for within-host virus evolution.
Data availability
All raw sequence data have been deposited at NCBI sequence read archive under BioProject Accession number PRJNA722099. All custom Python code and Jupyter notebooks to reproduce the analyses in this paper are available online: https://github.com/AMC-LAEB/Within_Host_H3vH1.
Article and author information
Author details
Funding
H2020 European Research Council (818353)
- Alvin X Han
- Zandra C Felix Garza
- Colin A Russell
National Institute of Allergy and Infectious Diseases (N01-A0-50042)
- Matthijs RA Welkers
- René M Vigeveno
- Nhu Duong Tran
- Thi Quynh Mai Le
- Thai Pham Quang
- Dinh Thoang Dang
- Thi Ngoc Anh Tran
- Manh Tuan Ha
- Thanh Hung Nguyen
- Quoc Thinh Le
- Thanh Hai Le
- Thi Bich Ngoc Hoang
- Kulkanya Chokephaibulkit
- Pilaipan Puthavathana
- Van Vinh Chau Nguyen
- My Ngoc Nghiem
- Van Kinh Nguyen
- Tuyet Trinh Dao
- Tinh Hien Tran
- Heiman FL Wertheim
- Peter W Horby
- Annette Fox
- H Rogier van Doorn
- Dirk Eggink
- Menno D de Jong
National Institutes of Health (HHSN272200500042C)
- Matthijs RA Welkers
- René M Vigeveno
- Nhu Duong Tran
- Thi Quynh Mai Le
- Thai Pham Quang
- Dinh Thoang Dang
- Thi Ngoc Anh Tran
- Manh Tuan Ha
- Thanh Hung Nguyen
- Quoc Thinh Le
- Thanh Hai Le
- Thi Bich Ngoc Hoang
- Kulkanya Chokephaibulkit
- Pilaipan Puthavathana
- Van Vinh Chau Nguyen
- My Ngoc Nghiem
- Van Kinh Nguyen
- Tuyet Trinh Dao
- Tinh Hien Tran
- Heiman FL Wertheim
- Peter W Horby
- Annette Fox
- H Rogier van Doorn
- Dirk Eggink
- Menno D de Jong
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The Institutional Review Board of all hospitals, the National Institute of Allergy and Infectious Diseases, and the Oxford Tropical Research Ethics Committee approved the study. Written informed consent was given by all patients (or proxies).
Copyright
© 2021, Han et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,883
- views
-
- 221
- downloads
-
- 14
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Genetics and Genomics
Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.
-
- Evolutionary Biology
- Genetics and Genomics
Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.