1. Developmental Biology
Download icon

Fertilization: Conserved sperm factors are no longer a bone of contention

  1. Xue Mei
  2. Andrew Singson  Is a corresponding author
  1. Waksman Institute of Microbiology and Department of Genetics, Rutgers University, United States
Insight
  • Cited 0
  • Views 753
  • Annotations
Cite this article as: eLife 2021;10:e68976 doi: 10.7554/eLife.68976

Abstract

Proteins related to a molecule involved in the formation of osteoclasts in bone are required for fertilization in worms, flies and mammals.

Main text

Osteoclasts are multinucleated cells that break down bone for skeletal maintenance, repair, and remodeling. Experiments on mice have established that a gene called DC-stamp (dendritic cell-specific transmembrane protein) is involved in progenitor cells fusing to make osteoclasts (Kukita et al., 2004; Kodama and Kaito, 2020). Two related genes, Dcst1 and Dcst2 (DC-stamp domain containing 1 and 2), are expressed in the testes of mice, and likely share a common ancestor with a group of invertebrate genes required for fertilization (Mei and Singson, 2021), including snky in Drosophila (Wilson et al., 2006), and spe-49 and spe-42 in C. elegans (Kroft et al., 2005; Wilson et al., 2018). Together these sperm-specific genes span between 700 million and one billion years of evolutionarily conserved function.

Now, in eLife, Naokazu Inoue (Fukushima Medical University), Yoshihisa Hagihara (AIST) and Ikuo Wada (Fukushima Medical University) report that the DCST1 and DCST2 proteins are required for fertilization in mice (Inoue et al., 2021). After sperm have migrated to the egg, fertilization involves several stages: the spermatozoa must first interact with and penetrate the egg coat, and then adhere to the egg plasma membrane. Next, the plasma membrane of the sperm and egg must fuse to form a zygote. The sperm of male mice lacking the genes Dcst1 and Dcst2 can penetrate the egg coat, but they are unable to fuse: this indicates that these genes have a direct or indirect role in cell fusion that is reminiscent of the role of DC-stamp in osteoclast formation.

Comparing DCST1 and DCST2 to related invertebrate and human proteins, Inoue et al. found that mouse DCST1 was most closely related to human DCST1, nematode SPE-49 and fruit fly SNKY, whereas mouse DCST2 was closer to human DCST2, nematode SPE-42 and fruit fly DCST2. Single-gene knockouts of Dcst1 and Dcst2, as well as double-knockout mice, exhibited male-specific sterility, with mutant spermatozoa failing to fertilize eggs in vitro. The spermatozoa from the double knockouts could reach the egg and undergo the acrosome reaction to penetrate the egg coat, but then they accumulated in the region between the egg coat and the egg membrane (Figure 1).

The interruption of fertilization in Dcst-related gene mutants in different species.

(A) In mammals, sperm mutant for Dcst1 and/or Dcst2 can penetrate the egg coat and contact the egg plasma membrane, but they do not fuse with the egg. (B) In C. elegans, spe-42 or spe-49 mutant sperm can contact the egg plasma membrane, but they do not fuse with the egg. (C) In Drosophila, giant sperm enter the egg through a small opening called a micropyle: however, in snky mutant sperm the plasma membrane of the sperm does not break down, thus blocking nuclear fusion.

These results indicate that DCST1 and 2 are not required for sperm migration to egg, the acrosome reaction, or penetration of the egg coat. In fact, the phenotype of the mouse double mutant is similar to that of mice lacking other key sperm molecules during fertilization, including the immunoglobulin superfamily proteins IZUMO1 and SPACA6. These two proteins are involved in sperm-egg recognition, adhesion or fusion (Bianchi and Wright, 2020). When spermatozoa mutant for both Dcst1 and Dcst2 contacted the egg in vitro, it appeared that IZUMO1, its egg-surface binding partner JUNO, and an egg-surface molecule called CD9, were all recruited normally to the interface between the sperm and the egg. This suggests that key molecules are recruited normally despite fusion failing.

Inoue et al. next investigated the presence of IZUMO1 and SPACA6 in sperm mutant for different molecules. IZUMO1 was present in sperm lacking Dcst1 and Dcst2, and also in sperm mutant for Spaca6. SPACA6, on the other hand, was lost in Izumo1, Dcst1, and Dcst2 mutant sperm. These results suggest that these proteins, which are all needed for sperm-egg fusion, likely assemble in a hierarchical fashion, with IZUMO1 being assembled independently of other molecules (Krauchunas et al., 2016). Further analyses of these proteins in various mutant backgrounds may provide new insights into how they assemble and interact during fertilization.

The groundbreaking work of Inoue et al. suggests important future questions. Why are two similar proteins both required non-redundantly for fertility in worms and mammals? Precise protein localization, domain swapping, and studies examining the relationship between structure and function could shed light on this question. Additionally, the biochemical role of these proteins is not clear. It is possible that they act as signaling molecules with an unknown ligand (Chiu et al., 2017). However, loss of function phenotypes appear consistent with some role in either membrane fusion (in mammals and worms) or in membrane breakdown (in flies; Figure 1).

DCST1 and DCST2 and related proteins could be better understood by investigating the molecules they interact with. For instance, it has been shown in C. elegans that SPE-42 binds to other sperm membrane proteins involved in spermatogenesis and fertilization (Marcello et al., 2018). Its interaction with the dysferlin FER-1 is particularly intriguing, since FER-1 regulates calcium-mediated membrane fusion during worm spermatogenesis (Washington and Ward, 2006). Mutations in a human dysferlin gene are associated with limb-girdle muscular dystrophy due to a loss of membrane repair in skeletal muscles (Bashir et al., 1998). This indicates that, in addition to a better understanding of fertilization, ongoing work on genes related to Dcst1 and Dcst2 may provide new insights into muscle and bone health.

In most species, relatively few gamete interaction molecules have been genetically defined (Mei and Singson, 2021), so the existence of conserved gamete interaction genes between invertebrates and mammals has been ‘a bone of contention’. A manuscript recently posted on bioRxiv confirms the role of Dcst1 and Dcst2 in male fertility described by Inoue and co-workers (Noda et al., 2021). This paper further demonstrates that zebrafish dcst1/2 are also required for fertilization. The characterization of genes related to sperm Dcst1 and Dcst2 in diverse species, including humans, should go a long way towards ending debates over deeply conserved gamete function genes. As the pace of fertility gene discovery increases in both vertebrate and invertebrate model systems, we fully expect that more fundamental molecular parallels and key features of the interaction between sperm and egg will be discovered.

References

Article and author information

Author details

  1. Xue Mei

    Xue Mei is in the Waksman Institute of Microbiology and the Department of Genetics, Rutgers University, Piscataway, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6498-1261
  2. Andrew Singson

    Andrew Singson is in the Waksman Institute and the Department of Genetics, Rutgers University, Piscataway, United States

    For correspondence
    singson@waksman.rutgers.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5091-0892

Publication history

  1. Version of Record published: April 28, 2021 (version 1)

Copyright

© 2021, Mei and Singson

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 753
    Page views
  • 67
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Tom Dierschke et al.
    Research Article Updated

    Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

    1. Cell Biology
    2. Developmental Biology
    Meng Zhu et al.
    Research Article

    Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the 8-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.