Evolutionary dynamics of circular RNAs in primates

  1. Gabriela Santos-Rodriguez
  2. Irina Voineagu
  3. Robert James Weatheritt  Is a corresponding author
  1. Garvan Institute of Medical Research, Australia
  2. UNSW Sydney, Australia

Abstract

Many primate genes produce circular RNAs (circRNAs). However, the extent of circRNA conservation between closely related species remains unclear. By comparing tissue-specific transcriptomes across over 70 million years of primate evolution, we identify that within 3 million years circRNA expression profiles diverged such that they are more related to species identity than organ type. However, our analysis also revealed a subset of circRNAs with conserved neural expression across tens of millions of years of evolution. By comparing to species-specific circRNAs, we identified that the downstream intron of the conserved circRNAs display a dramatic lengthening during evolution due to the insertion of novel retrotransposons. Our work provides comparative analyses of the mechanisms promoting circRNAs to generate increased transcriptomic complexity in primates.

Data availability

All datasets used in this study are included in the manuscript and supporting files. Analyzed data is also included in supporting material as well.

The following previously published data sets were used

Article and author information

Author details

  1. Gabriela Santos-Rodriguez

    Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9076-0294
  2. Irina Voineagu

    UNSW Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert James Weatheritt

    Garvan Institute of Medical Research, Sydney, Australia
    For correspondence
    r.weatheritt@garvan.org.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3716-1783

Funding

Australian Research Council

  • Irina Voineagu
  • Robert James Weatheritt

Cancer Institute of NSW

  • Robert James Weatheritt

UNSW UIPA PhD Scholarship

  • Gabriela Santos-Rodriguez

University of New South Wales Scientia Fellowship

  • Irina Voineagu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Santos-Rodriguez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,067
    views
  • 265
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriela Santos-Rodriguez
  2. Irina Voineagu
  3. Robert James Weatheritt
(2021)
Evolutionary dynamics of circular RNAs in primates
eLife 10:e69148.
https://doi.org/10.7554/eLife.69148

Share this article

https://doi.org/10.7554/eLife.69148

Further reading

    1. Evolutionary Biology
    Ayumi Mizuno, Malgorzata Lagisz ... Shinichi Nakagawa
    Research Article

    Eyespot patterns have evolved in many prey species. These patterns were traditionally explained by the eye mimicry hypothesis, which proposes that eyespots resembling vertebrate eyes function as predator avoidance. However, it is possible that eyespots do not mimic eyes: according to the conspicuousness hypothesis, eyespots are just one form of vivid signals where only conspicuousness matters. They might work simply through neophobia or unfamiliarity, without necessarily implying aposematism or the unprofitability to potential predators. To test these hypotheses and explore factors influencing predators’ responses, we conducted a meta-analysis with 33 empirical papers that focused on bird responses to both real lepidopterans and artificial targets with conspicuous patterns (i.e. eyespots and non-eyespots). Supporting the latter hypothesis, the results showed no clear difference in predator avoidance efficacy between eyespots and non-eyespots. When comparing geometric pattern characteristics, bigger pattern sizes and smaller numbers of patterns were more effective in preventing avian predation. This finding indicates that single concentric patterns have stronger deterring effects than paired ones. Taken together, our study supports the conspicuousness hypothesis more than the eye mimicry hypothesis. Due to the number and species coverage of published studies so far, the generalisability of our conclusion may be limited. The findings highlight that pattern conspicuousness is key to eliciting avian avoidance responses, shedding a different light on this classic example of signal evolution.

    1. Evolutionary Biology
    Xuankun Li, Adriana E Marvaldi ... Duane D McKenna
    Research Article

    The rise of angiosperms to ecological dominance and the breakup of Gondwana during the Mesozoic marked major transitions in the evolutionary history of insect-plant interactions. To elucidate how contemporary trophic interactions were influenced by host plant shifts and palaeogeographical events, we integrated molecular data with information from the fossil record to construct a time tree for ancient phytophagous weevils of the beetle family Belidae. Our analyses indicate that crown-group Belidae originated approximately 138 Ma ago in Gondwana, associated with Pinopsida (conifer) host plants, with larvae likely developing in dead/decaying branches. Belids tracked their host plants as major plate movements occurred during Gondwana’s breakup, surviving on distant, disjunct landmasses. Some belids shifted to Angiospermae and Cycadopsida when and where conifers declined, evolving new trophic interactions, including brood-pollination mutualisms with cycads and associations with achlorophyllous parasitic angiosperms. Extant radiations of belids in the genera Rhinotia (Australian region) and Proterhinus (Hawaiian Islands) have relatively recent origins.