A sex-specific evolutionary interaction between ADCY9 and CETP
Abstract
Pharmacogenomic studies have revealed associations between rs1967309 in the adenylyl cyclase type 9 (ADCY9) gene and clinical responses to the cholesteryl ester transfer protein (CETP) modulator dalcetrapib, however, the mechanism behind this interaction is still unknown. Here, we characterized selective signals at the locus associated with the pharmacogenomic response in human populations and we show that rs1967309 region exhibits signatures of positive selection in several human populations. Furthermore, we identified a variant in CETP, rs158477, which is in long-range linkage disequilibrium with rs1967309 in the Peruvian population. The signal is mainly seen in males, a sex-specific result that is replicated in the LIMAA cohort of over 3,400 Peruvians. Analyses of RNA-seq data further suggest an epistatic interaction on CETP expression levels between the two SNPs in multiple tissues, which also differs between males and females. We also detected interaction effects of the two SNPs with sex on cardiovascular phenotypes in the UK Biobank, in line with the sex-specific genotype associations found in Peruvians at these loci. We propose that ADCY9 and CETP coevolved during recent human evolution due to sex-specific selection, which points towards a biological link between dalcetrapib’s pharmacogene ADCY9 and its therapeutic target CETP.
Data availability
- 1000 Genomes Project, GEUVADIS is freely available.- The Native American genetic dataset was shared to us upon request to the authors of the initial paper and through a data access agreement with Universidad de Antioquia (Prof. Omar Triana Chavez). We contacted bedoya.g@gmail.com and a.ruizlin@ucl.ac.uk to get access to the dataset and we completed a data access application form and signed a data access approval once approved. Applications for access to these data can be submitted at any time. These are considered on a rolling basis and a decision was given within 1 month of receipt. PhD student applicants must include their supervisors as a co-applicant and provide their full contact details. A publication list must be provided for the applicant, co-applicants and PhD supervisors where PhD students have applied to provide proof of competence in handling datasets of this size and nature. - UK Biobank was accessed through data access approval under the project number #15357 and #20168. Information to apply for data access can be found here: https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access - CARTaGENE biobank was accessed through data access approval under the project number #406713. Information to apply for data access can be found here: https://www.cartagene.qc.ca/en/researchers/access-request - GTEx v8 dataset was accessed through dbGaP under project number #19088 LIMAA dataset was accessed through dbGaP under the project number #26882. Information to apply for data access through dbGAP can be found here: https://dbgap.ncbi.nlm.nih.gov- RNA-sequencing of ADCY9-knocked-down HepG2 cell line data has been deposited under GSE174640 (embargo): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174640For reviewers/editors: Enter token ktaxgqkkrxupjkl into the box- Source data files and code for all main figures are available here: https://github.com/HussinLab/adcy9_cetp_Gamache_2021
-
RNA-sequencing of ADCY9-knocked-down HepG2 cell line (embargo)NCBI Gene Expression Omnibus, GSE174640.
-
LIMAAdbGaP project #26882.
-
Native American genetic dataset (NAGD)rom authors bedoya.g@gmail.com and a.ruizlin@ucl.ac.uk.
Article and author information
Author details
Funding
Institut de Cardiologie de Montréal
- Isabel Gamache
- Marc-André Legault
- Jean-Christophe Grenier
- Rocio Sanchez
- Eric Rhéaume
- Holly Trochet
- Jean-Claude Tardif
- Marie-Pierre Dubé
- Julie Hussin
Université de Montréal
- Isabel Gamache
Canadian Institutes of Health Research
- Marc-André Legault
Canada Research Chairs
- Jean-Claude Tardif
- Marie-Pierre Dubé
Fonds de Recherche du Québec - Santé
- Julie Hussin
Institut de Valorisation des Données
- Isabel Gamache
- Jean-Christophe Grenier
- Julie Hussin
Health collaboration acceleration fund from the Ministère de l'Économie et de l'Innovation of the Government of Quebec
- Jean-Claude Tardif
- Marie-Pierre Dubé
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The analyses done in this study were approved by the different cohorts used. Participants in these cohorts gave their general consent for their data to be used for research purposes. All individual-level data was anonymized and no efforts were made by the authors to deanonymize or recontact any of the participants from the cohorts, in keeping with our agreements with the UK Biobank, CARTaGENE, dbGAP, 1000Genomes and the Native American Genetics dataset (Universidad de Antioquia).
Copyright
© 2021, Gamache et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,101
- views
-
- 103
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Computational and Systems Biology
Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.