Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis
Abstract
DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.
Data availability
All sequencing data generated in this study are publicly available at the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE171198.
-
Repression of CHROMOMETHYLASE 3 Prevents Epigenetic Collateral Damage in ArabidopsisNCBI Gene Expression Omnibus, GSE171198.
-
The embryonic transcriptome of Arabidopsis thalianaNCBI Gene Expression Omnibus, GSE121236.
-
Active DNA demethylation in plant companion cells reinforces transposon methylation in gametesNCBI Gene Expression Omnibus, GSE38935.
-
Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprintingNCBI Gene Expression Omnibus, GSE52814.
-
Genome-wide demethylation of Arabidopsis endospermNCBI Gene Expression Omnibus, GSE15922.
-
DNA methylation dynamics during early plant lifeNCBI Gene Expression Omnibus, GSE85975.
-
Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylomeNCBI Gene Expression Omnibus, GSE39901.
-
The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in ArabidopsisNCBI Gene Expression Omnibus, GSE50942.
-
Non-CG methylation patterns shape the epigenetic landscape in ArabidopsisNCBI Gene Expression Omnibus, GSE51304.
-
Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in ArabidopsisNCBI Gene Expression Omnibus, GSE98214.
-
DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcriptsNCBI Gene Expression Omnibus, GSE122394.
-
MNase analysis of linker histone H1 mutantNCBI Gene Expression Omnibus, GSE113556.
-
DNA methylation-linked chromatin accessibility affects genomic architecture in ArabidopsisNCBI Gene Expression Omnibus, GSE155503.
Article and author information
Author details
Funding
H2020 European Research Council (637888)
- Michael D Nodine
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Papareddy et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,129
- views
-
- 335
- downloads
-
- 15
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Immunology and Inflammation
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
-
- Genetics and Genomics
- Microbiology and Infectious Disease
The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.