Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis
Abstract
DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.
Data availability
All sequencing data generated in this study are publicly available at the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE171198.
-
Repression of CHROMOMETHYLASE 3 Prevents Epigenetic Collateral Damage in ArabidopsisNCBI Gene Expression Omnibus, GSE171198.
-
The embryonic transcriptome of Arabidopsis thalianaNCBI Gene Expression Omnibus, GSE121236.
-
Active DNA demethylation in plant companion cells reinforces transposon methylation in gametesNCBI Gene Expression Omnibus, GSE38935.
-
Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprintingNCBI Gene Expression Omnibus, GSE52814.
-
Genome-wide demethylation of Arabidopsis endospermNCBI Gene Expression Omnibus, GSE15922.
-
DNA methylation dynamics during early plant lifeNCBI Gene Expression Omnibus, GSE85975.
-
Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylomeNCBI Gene Expression Omnibus, GSE39901.
-
The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in ArabidopsisNCBI Gene Expression Omnibus, GSE50942.
-
Non-CG methylation patterns shape the epigenetic landscape in ArabidopsisNCBI Gene Expression Omnibus, GSE51304.
-
Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in ArabidopsisNCBI Gene Expression Omnibus, GSE98214.
-
DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcriptsNCBI Gene Expression Omnibus, GSE122394.
-
MNase analysis of linker histone H1 mutantNCBI Gene Expression Omnibus, GSE113556.
-
DNA methylation-linked chromatin accessibility affects genomic architecture in ArabidopsisNCBI Gene Expression Omnibus, GSE155503.
Article and author information
Author details
Funding
H2020 European Research Council (637888)
- Michael D Nodine
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Richard Amasino, University of Wisconsin Madison, United States
Publication history
- Received: April 13, 2021
- Accepted: July 21, 2021
- Accepted Manuscript published: July 23, 2021 (version 1)
- Accepted Manuscript updated: July 26, 2021 (version 2)
- Version of Record published: August 9, 2021 (version 3)
Copyright
© 2021, Papareddy et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,403
- Page views
-
- 242
- Downloads
-
- 2
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(−) mutants, but timed similarly in let-7(−) nhr-23(−) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3′ UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.
-
- Genetics and Genomics
The RNA-guided CRISPR/Cas9 system is a powerful tool for genome editing, but its targeting scope is limited by the protospacer-adjacent motif (PAM). To expand the target scope, it is crucial to develop a CRISPR toolbox capable of recognizing multiple PAMs. Here, using a GFP-activation assay, we tested the activities of 29 type II-C orthologs closely related to Nme1Cas9, 25 of which are active in human cells. These orthologs recognize diverse PAMs with variable length and nucleotide preference, including purine-rich, pyrimidine-rich, and mixed purine and pyrimidine PAMs. We characterized in depth the activity and specificity of Nsp2Cas9. We also generated a chimeric Cas9 nuclease that recognizes a simple N4C PAM, representing the most relaxed PAM preference for compact Cas9s to date. These Cas9 nucleases significantly enhance our ability to perform allele-specific genome editing.