Cellular Organisation: Putting organelles in their place

Experiments in C. elegans reveal new insights into how the ANC-1 protein helps to anchor the nucleus and other organelles in place.
  1. Patricia Ulm
  2. Verena Jantsch  Is a corresponding author
  1. Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria

Cells contain an assortment of organelles which each have their own specialized role. To work correctly, most organelles need to be properly positioned within the cell. For example, mis-localization of the cell’s largest organelle, the nucleus, has been observed in neuromuscular diseases, such as Emery-Dreyfuss muscular dystrophy (Luxton and Starr, 2014).

Current models suggest that positioning of the nucleus relies on a complex called LINC (short for Linker of Nucleoskeleton and Cytoskeleton), which is made up of proteins that contain either a SUN or KASH domain. The SUN proteins (SAD1, UNC-84) sit across the inner nuclear membrane and connect to structures in the nucleus, such as chromatin and the nuclear lamina, and the KASH proteins (Klarsicht, ANC-1, Syne Homology) span across the outer nuclear membrane and interact with proteins in the cytoskeleton. The SUN and KASH domains of these proteins join together to form a bridge that mechanically couples the nucleus and cytoskeleton, which helps to anchor the nucleus in the right place (Kim et al., 2015).

This model of how nuclear positioning works is primarily based on experiments in Caenorhabditis elegans worms with mutations in the genes for either the UNC-84 or ANC-1 protein (Starr and Fridolfsson, 2010). The hypodermis of adult wild-type worms is made up of several huge hyp-7 cells (or syncytia) which each contain 139 evenly spaced nuclei (Shemer and Podbilewicz, 2000), making them a useful system for investigating nuclear anchorage. According to the model, if the nuclei in hyp-7 cells are exclusively anchored via the SUN–KASH bridge, then loss of the genes for UNC-84 or ANC-1 should have an identical effect and result in the same amount of nuclear clustering. However, in 2018, a group of researchers made a puzzling discovery: they found that deleting the gene for ANC-1 resulted in more severe nuclear clustering than removing the gene for UNC-84 (Cain et al., 2018). Now, in eLife, Daniel A Starr and co-workers from University California, Davis – including Hongyan Hao as first author – report that the model for how the nucleus is positioned may need re-defining (Hao et al., 2021).

The team (which includes some of the authors involved in the 2018 study) found, as expected, that removing the gene for ANC-1 led to nuclear clustering in hyp-7 cells, indicating that nuclear anchorage had been lost (Figure 1). The untethered nuclei also disrupted the network of microtubules in the cytoskeleton, and appeared much smaller and less rounded, suggesting that the cells lacked mechanical stability. In C. elegans, the ANC-1 protein contains multiple domains: an actin-binding domain at its N-terminus, several cytoplasmic domains that likely bind to other proteins, a transmembrane domain, and a KASH domain at its C-terminus (Gundersen and Worman, 2013; Starr and Han, 2002). To gain a better understanding of how ANC-1 positions the nucleus, Hao et al. deleted these different domains, either separately or in combination, to see how this affected the protein’s role in the cell.

Loss of ANC-1 leads to unanchored and misshaped organelles and a smaller body size in worms.

The hypodermis of C. elegans worms (top schematic) is made up of hyp-7 cells which contain over a hundred nuclei (represented as black dots). In wild-type worms (left), the KASH protein ANC-1 (depicted as spikes) localizes to the membrane of the nucleus and endoplasmic reticulum (ER). As a result, the nuclei (purple) are spherical and evenly spaced, and the ER (blue), mitochondria (orange) and lipid droplets (yellow) are well anchored. The microtubule network (black lines) is also evenly distributed throughout the cytoplasm. Meanwhile, in mutant worms lacking the gene for ANC-1 (right), the ER and mitochondria are fragmented, and the nuclei are unanchored and clustered together. Lipid droplets are also clustered and the microtubule network is disrupted by the movement of the untethered organelles. This causes the mutant worm to have a smaller body size and the nuclei in its hyp-7 cells to be mispositioned.

Image credit: Patricia Ulm.

Deletion of the KASH domain only caused moderate nuclear clustering, and loss of the actin-binding domain did not generate any nuclear anchorage defects. In contrast, deleting parts of ANC-1 protein that sit within the cytoplasm and likely bind to other cytoskeleton proteins led to more severe positioning defects. Notably, nuclear mispositioning was greatly increased in double mutants lacking both a functional SUN domain in UNC-84 and a cytoplasmic domain of ANC-1. This synergistic effect suggests that nuclear positioning is likely controlled by cooperation between two distinct domains of ANC-1: the cytoplasmic domain and the domain that binds to UNC-84 in the SUN-KASH bridge.

Previous studies have shown that ANC-1 also controls the distribution of mitochondria (Starr and Han, 2002). Therefore, Hao et al. investigated whether ANC-1 is also essential for positioning the mitochondria and another organelle called the endoplasmic reticulum (or ER for short). In mutant worms lacking the gene for ANC-1, they found unanchored fragments of mitochondria and the ER along with clusters of lipid droplets (Figure 1). As seen for the nucleus, deleting the KASH domain only resulted in mild defects in ER positioning, suggesting that localization of the ER also mainly relies on parts of the ANC-1 protein outside the KASH domain.

These findings suggest that ANC-1 positions the nucleus and ER largely independently from the KASH domain. Further experiments revealed that the ANC-1 protein is also located on the membrane of the ER. This led Hao et al. to propose a new cytoplasmic integrity model in which ANC-1 localizes to both the ER and nuclear membranes, and reaches out to correctly position organelles via an interconnecting network that permeates the entire cytoplasm.

This study raises the question of how ANC-1 can position and hold organelles in place with little or no help from its KASH and actin-binding domains. Notably, studies in mice have also shown that the actin-binding domains of Nesprin1 (mouse ANC-1) are not essential to anchor the nucleus within the cytoplasm (Stroud et al., 2017). Therefore, some important questions remain: which cytoskeletal component(s) work with ANC-1 to correctly position organelles and confer mechanical stability to the cell? Are the neuromuscular diseases associated with mutations in the LINC complex the result of alterations in cytoplasmic integrity rather than nuclear anchorage defects? Further experiments using C. elegans as a model system may help to answer these questions and shed further light on how ANC-1 anchors organelles in place.

References

Article and author information

Author details

  1. Patricia Ulm

    Patricia Ulm is in the Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8876-2576
  2. Verena Jantsch

    Verena Jantsch is in the Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria

    For correspondence
    verena.jantsch@univie.ac.at
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1978-682X

Publication history

  1. Version of Record published:

Copyright

© 2021, Ulm and Jantsch

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,468
    views
  • 116
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patricia Ulm
  2. Verena Jantsch
(2021)
Cellular Organisation: Putting organelles in their place
eLife 10:e69422.
https://doi.org/10.7554/eLife.69422

Further reading

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.