Abstract

Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS were identified using a high throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide resistant weeds.

Data availability

Diffraction data have been deposited in PDB under the accession code 7MDS. The validation report has been uploaded as a 'Related Manuscript File'.Other data sets have been uploaded as 'Source Data' files.

Article and author information

Author details

  1. Tatiana P Soares da Costa

    La Trobe University, Melbourne, Australia
    For correspondence
    t.soaresdacosta@latrobe.edu.au
    Competing interests
    Tatiana P Soares da Costa, is listed as an inventor on a patent pertaining to inhibitors described in the manuscript. Patent Title: Heterocyclic inhibitors of lysine biosynthesis via the diaminopimelate pathway; International patent (PCT) No.: WO2018187845A1; Granted: 18/10/2018..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6275-7485
  2. Cody J Hall

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  3. Santosh Panjikar

    MX, Australian Synchrotron, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7429-3879
  4. Jessica A Wyllie

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  5. Rebecca M Christoff

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  6. Saadi Bayat

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  7. Mark D Hulett

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2072-5968
  8. Belinda M Abbott

    La Trobe University, Melbourne, Australia
    Competing interests
    Belinda M Abbott, is listed as an inventor on a patent pertaining to inhibitors described in the manuscript. Patent Title: Heterocyclic inhibitors of lysine biosynthesis via the diaminopimelate pathway; International patent (PCT) No.: WO2018187845A1; Granted: 18/10/2018..
  9. Anthony R Gendall

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2255-3939
  10. Matthew A Perugini

    La Trobe University, Melbourne, Australia
    For correspondence
    Matt.Perugini@gmail.com
    Competing interests
    Matthew A Perugini, is listed as an inventor on a patent pertaining to inhibitors described in the manuscript. Patent Title: Heterocyclic inhibitors of lysine biosynthesis via the diaminopimelate pathway; International patent (PCT) No.: WO2018187845A1; Granted: 18/10/2018..

Funding

National Health and Medical Research Council (APP1091976)

  • Tatiana P Soares da Costa

Australian Research Council (DE190100806)

  • Tatiana P Soares da Costa

Australian Research Council (DP150103313)

  • Santosh Panjikar
  • Matthew A Perugini

Australian Research Council Research Hub for Medicinal Agriculture (IH180100006)

  • Anthony R Gendall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Soares da Costa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,667
    views
  • 451
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatiana P Soares da Costa
  2. Cody J Hall
  3. Santosh Panjikar
  4. Jessica A Wyllie
  5. Rebecca M Christoff
  6. Saadi Bayat
  7. Mark D Hulett
  8. Belinda M Abbott
  9. Anthony R Gendall
  10. Matthew A Perugini
(2021)
Towards novel herbicide modes of action by inhibiting lysine biosynthesis in plants
eLife 10:e69444.
https://doi.org/10.7554/eLife.69444

Share this article

https://doi.org/10.7554/eLife.69444

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.

    1. Biochemistry and Chemical Biology
    Yingjie Sun, Changheng Li ... Youngnam N Jin
    Research Article

    Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug–protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs’ mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.