Abstract

Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS were identified using a high throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide resistant weeds.

Data availability

Diffraction data have been deposited in PDB under the accession code 7MDS. The validation report has been uploaded as a 'Related Manuscript File'.Other data sets have been uploaded as 'Source Data' files.

Article and author information

Author details

  1. Tatiana P Soares da Costa

    La Trobe University, Melbourne, Australia
    For correspondence
    t.soaresdacosta@latrobe.edu.au
    Competing interests
    Tatiana P Soares da Costa, is listed as an inventor on a patent pertaining to inhibitors described in the manuscript. Patent Title: Heterocyclic inhibitors of lysine biosynthesis via the diaminopimelate pathway; International patent (PCT) No.: WO2018187845A1; Granted: 18/10/2018..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6275-7485
  2. Cody J Hall

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  3. Santosh Panjikar

    MX, Australian Synchrotron, Monash University, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7429-3879
  4. Jessica A Wyllie

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  5. Rebecca M Christoff

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  6. Saadi Bayat

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
  7. Mark D Hulett

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2072-5968
  8. Belinda M Abbott

    La Trobe University, Melbourne, Australia
    Competing interests
    Belinda M Abbott, is listed as an inventor on a patent pertaining to inhibitors described in the manuscript. Patent Title: Heterocyclic inhibitors of lysine biosynthesis via the diaminopimelate pathway; International patent (PCT) No.: WO2018187845A1; Granted: 18/10/2018..
  9. Anthony R Gendall

    La Trobe University, Melbourne, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2255-3939
  10. Matthew A Perugini

    La Trobe University, Melbourne, Australia
    For correspondence
    Matt.Perugini@gmail.com
    Competing interests
    Matthew A Perugini, is listed as an inventor on a patent pertaining to inhibitors described in the manuscript. Patent Title: Heterocyclic inhibitors of lysine biosynthesis via the diaminopimelate pathway; International patent (PCT) No.: WO2018187845A1; Granted: 18/10/2018..

Funding

National Health and Medical Research Council (APP1091976)

  • Tatiana P Soares da Costa

Australian Research Council (DE190100806)

  • Tatiana P Soares da Costa

Australian Research Council (DP150103313)

  • Santosh Panjikar
  • Matthew A Perugini

Australian Research Council Research Hub for Medicinal Agriculture (IH180100006)

  • Anthony R Gendall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Soares da Costa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,613
    views
  • 444
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatiana P Soares da Costa
  2. Cody J Hall
  3. Santosh Panjikar
  4. Jessica A Wyllie
  5. Rebecca M Christoff
  6. Saadi Bayat
  7. Mark D Hulett
  8. Belinda M Abbott
  9. Anthony R Gendall
  10. Matthew A Perugini
(2021)
Towards novel herbicide modes of action by inhibiting lysine biosynthesis in plants
eLife 10:e69444.
https://doi.org/10.7554/eLife.69444

Share this article

https://doi.org/10.7554/eLife.69444

Further reading

    1. Biochemistry and Chemical Biology
    Yoshihisa Mimura, Tomoya Yasujima ... Hiroaki Yuasa
    Short Report

    The intestinal absorption of essential nutrients, especially those not readily biosynthesized, is a critical physiological process for maintaining homeostasis. Numerous studies have indicated that intestinal absorption is mediated by various membrane transporters. Citrate, a crucial bioactive compound produced as an intermediate in the Krebs cycle, is absorbed in the small intestine through carrier-mediated systems because of its high hydrophilicity. While the luminal absorption of citrate is mediated by Na+-dicarboxylate cotransporter 1 (NaDC1/SLC13A2), the mechanism governing the release of the transported citrate into the bloodstream remains unknown. Here, we explored the transporters responsible for intestinal citrate absorption at the basolateral membrane, focusing on highly expressed orphan transporters in the small intestine as candidates. Consequently, SLC35G1, originally identified as a partner of stromal interaction molecule 1, a cell surface transmembrane glycoprotein, was found to play a role in the intestinal absorption of citrate at the basolateral membrane. Furthermore, our results revealed that SLC35G1-mediated citrate transport was diminished by chloride ions at physiologically relevant extracellular concentrations. This suggests that SLC35G1, to our best knowledge, is the first transporter identified to be extremely sensitive to chloride ions among those functioning on the basolateral membrane of intestinal epithelial cells. This study provides valuable insights into the intestinal absorption of citrate and significantly contributes to elucidating the poorly understood molecular basis of the intestinal absorption system.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Lina Antenucci, Salla Virtanen ... Perttu Permi
    Research Article

    Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.