Monocyte-derived transcriptome signature indicates antibody-dependent cellular phagocytosis as a potential mechanism of vaccine-induced protection against HIV-1

  1. Shida Shangguan
  2. Philip K Ehrenberg
  3. Aviva Geretz
  4. Lauren Yum
  5. Gautam Kundu
  6. Kelly May
  7. Slim Fourati
  8. Krystelle Nganou-Makamdop
  9. LaTonya D Williams
  10. Sheetal Sawant
  11. Eric Lewitus
  12. Punnee Pitisuttithum
  13. Sorachai Nitayaphan
  14. Suwat Chariyalertsak
  15. Supachai Rerks-Ngarm
  16. Morgane Rolland
  17. Daniel C Douek
  18. Peter Gilbert
  19. Georgia D Tomaras
  20. Nelson L Michael
  21. Sandhya Vasan
  22. Rasmi Thomas  Is a corresponding author
  1. Walter Reed Army Institute of Research, United States
  2. Emory University, United States
  3. National Institutes of Health, United States
  4. Duke University School of Medicine, United States
  5. Mahidol University, Thailand
  6. AFRIMS, Thailand
  7. Chiang Mai University, Thailand
  8. Ministry of Public Health, Thailand
  9. Fred Hutchinson Cancer Research Center, United States

Abstract

A gene signature previously correlated with mosaic adenovirus 26 vaccine protection in simian immunodeficiency virus (SIV) and SHIV challenge models in non-human primates (NHP). In this report we investigated presence of this signature as a correlate of reduced risk in human clinical trials and potential mechanisms of protection. The absence of this gene signature in the DNA/rAd5 human vaccine trial, which did not show efficacy, strengthens our hypothesis that this signature is only enriched in studies that demonstrated protection. This gene signature was enriched in the partially effective RV144 human trial that administered the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of HIV-1 acquisition and increased vaccine efficacy. Total RNA-seq in a clinical trial that used the same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phagocytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface markers and transcriptomes of 53,777 single cells from the same trial showed that genes in this signature were primarily expressed in cells belonging to the myeloid lineage, including monocytes, which are major effector cells for ADCP. The consistent association of this transcriptome signature with vaccine efficacy represents a tool both to identify potential mechanisms, as with ADCP here, and to screen novel approaches to accelerate development of new vaccine candidates.

Data availability

All code and data generated or analyzed during this study are included with the manuscript and supporting files. Source data files have been provided for all data used in this study, including CITE-seq and gene expression matrix for all studies are available at figshare 10.6084/m9.figshare.14555958. The RNA-seq gene expression data for RV306 and HVTN 505 studies are available in the National Center for Biotechnology Information Gene Expression Omnibus (GEO) under accession numbers: "GSE181932" and "GS1E181859" respectively. Dataset from GSE181932 can be accessed at URL https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181932with reviewer token mnyxkcgedbqdnch.Dataset from GSE181859 can be accessed at URL https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181859with reviewer token etuhyseoxrghxkd.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shida Shangguan

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Philip K Ehrenberg

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8695-4301
  3. Aviva Geretz

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lauren Yum

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gautam Kundu

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kelly May

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Slim Fourati

    Pathology and Laboratory Medicine, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6609-7587
  8. Krystelle Nganou-Makamdop

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. LaTonya D Williams

    Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sheetal Sawant

    Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eric Lewitus

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Punnee Pitisuttithum

    Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  13. Sorachai Nitayaphan

    AFRIMS, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  14. Suwat Chariyalertsak

    Chiang Mai University, Chiang Mai, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  15. Supachai Rerks-Ngarm

    Ministry of Public Health, Nonthaburi, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  16. Morgane Rolland

    Walter Reed Army Institute of Research, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Daniel C Douek

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Peter Gilbert

    Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Georgia D Tomaras

    Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Nelson L Michael

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Sandhya Vasan

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Rasmi Thomas

    Walter Reed Army Institute of Research, Silver Spring, United States
    For correspondence
    rthomas@hivresearch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2116-2418

Funding

Henry M. Jackson Foundation (W81XWH-07-2-0067)

  • Shida Shangguan
  • Philip K Ehrenberg
  • Aviva Geretz
  • Lauren Yum
  • Gautam Kundu
  • Kelly May
  • Eric Lewitus
  • Morgane Rolland
  • Nelson L Michael
  • Sandhya Vasan
  • Rasmi Thomas

National Institute of Allergy and Infectious Diseases

  • Shida Shangguan
  • Philip K Ehrenberg
  • Aviva Geretz
  • Lauren Yum
  • Gautam Kundu
  • Eric Lewitus
  • Morgane Rolland
  • Nelson L Michael
  • Sandhya Vasan
  • Rasmi Thomas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,535
    views
  • 196
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shida Shangguan
  2. Philip K Ehrenberg
  3. Aviva Geretz
  4. Lauren Yum
  5. Gautam Kundu
  6. Kelly May
  7. Slim Fourati
  8. Krystelle Nganou-Makamdop
  9. LaTonya D Williams
  10. Sheetal Sawant
  11. Eric Lewitus
  12. Punnee Pitisuttithum
  13. Sorachai Nitayaphan
  14. Suwat Chariyalertsak
  15. Supachai Rerks-Ngarm
  16. Morgane Rolland
  17. Daniel C Douek
  18. Peter Gilbert
  19. Georgia D Tomaras
  20. Nelson L Michael
  21. Sandhya Vasan
  22. Rasmi Thomas
(2021)
Monocyte-derived transcriptome signature indicates antibody-dependent cellular phagocytosis as a potential mechanism of vaccine-induced protection against HIV-1
eLife 10:e69577.
https://doi.org/10.7554/eLife.69577

Share this article

https://doi.org/10.7554/eLife.69577

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.