Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids

  1. Thomas M Rawlings
  2. Komal Makwana
  3. Deborah M Taylor
  4. Matteo A Molè
  5. Katherine J Fishwick
  6. Maria Tryfonos
  7. Joshua Odendaal
  8. Amelia Hawkes
  9. Magdalena Zernicka-Goetz
  10. Geraldine M Hartshorne
  11. Jan Joris Brosens  Is a corresponding author
  12. Emma S Lucas
  1. University of Warwick, United Kingdom
  2. University Hospitals Coventry and Warwickshire NHS Trust, United Kingdom
  3. University of Cambridge, United Kingdom

Abstract

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterised endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.

Data availability

Single cell RNAseq data presented in this paper are openly available as a Gene Expression Omnibus DataSet (www.ncbi.nlm.gov/gds) under accession number GSE168405. Other source data are presented in the Source Data tables as indicated in the corresponding Figure legends.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Thomas M Rawlings

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Komal Makwana

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Deborah M Taylor

    Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Matteo A Molè

    University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine J Fishwick

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Tryfonos

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua Odendaal

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Amelia Hawkes

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Magdalena Zernicka-Goetz

    Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridgeshire, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7004-2471
  10. Geraldine M Hartshorne

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Jan Joris Brosens

    University of Warwick, Coventry, United Kingdom
    For correspondence
    J.J.Brosens@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0116-9329
  12. Emma S Lucas

    University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8571-8921

Funding

Wellcome Trust (212233/Z/18/Z)

  • Jan Joris Brosens

MRC Doctoral Training Partnership (MR/N014294/1)

  • Thomas M Rawlings

Warwick-Wellcome Trust Translational Partnership

  • Thomas M Rawlings

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas E Spencer

Ethics

Human subjects: Endometrial biopsies were obtained from women attending the Implantation Research Clinic, University Hospitals Coventry and Warwickshire National Health Service Trust. Written informed consent was obtained in accordance with the Declaration of Helsinki 2000. The study was approved by the NHS National Research Ethics Committee of Hammersmith and Queen Charlotte's Hospital NHS Trust (1997/5065) and Tommy's Reproductive Health Biobank (Project TSR19-002E, REC Reference: 18/WA/0356).The use of vitrified human blastocysts was carried out under a Human Fertilisation and Embryology Authority research licence (HFEA: R0155) with local National Health Service Research Ethics Committee approval (04/Q2802/26). Spare blastocysts were donated to research following informed consent by couples who had completed their fertility treatment at the Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire National Health Service Trust.

Version history

  1. Preprint posted: March 2, 2021 (view preprint)
  2. Received: April 20, 2021
  3. Accepted: September 3, 2021
  4. Accepted Manuscript published: September 6, 2021 (version 1)
  5. Version of Record published: October 18, 2021 (version 2)

Copyright

© 2021, Rawlings et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,364
    views
  • 1,224
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas M Rawlings
  2. Komal Makwana
  3. Deborah M Taylor
  4. Matteo A Molè
  5. Katherine J Fishwick
  6. Maria Tryfonos
  7. Joshua Odendaal
  8. Amelia Hawkes
  9. Magdalena Zernicka-Goetz
  10. Geraldine M Hartshorne
  11. Jan Joris Brosens
  12. Emma S Lucas
(2021)
Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids
eLife 10:e69603.
https://doi.org/10.7554/eLife.69603

Share this article

https://doi.org/10.7554/eLife.69603

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.