The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice

  1. Rafael Bayarri-Olmos
  2. Laust Bruun Johnsen
  3. Manja Idorn
  4. Line S Reinert
  5. Anne Rosbjerg
  6. Søren Vang
  7. Cecilie Bo Hansen
  8. Charlotte Helgstrand
  9. Jais Rose Bjelke
  10. Theresa Bak-Thomsen
  11. Soren Paludan
  12. Peter Garred
  13. Mikkel-Ole Skjoedt  Is a corresponding author
  1. Copenhagen University Hospital, Denmark
  2. Novo Nordisk A/S, Denmark
  3. Aarhus University, Denmark
  4. Aarhus University Hospital, Denmark

Abstract

The alpha/B.1.1.7 SARS-CoV-2 lineage emerged in autumn 2020 in the United Kingdom and transmitted rapidly until winter 2021 when it was responsible for most new COVID-19 cases in many European countries. The incidence domination was likely due to a fitness advantage that could be driven by the RBD residue change (N501Y), which also emerged independently in other Variants of Concern such as the beta/B.1.351 and gamma/P.1 strains. Here we present a functional characterization of the alpha/B.1.1.7 variant and show an eight-fold affinity increase towards human ACE-2. In accordance with this, transgenic hACE-2 mice showed a faster disease progression and severity after infection with a low dose of B.1.1.7, compared to an early 2020 SARS-CoV-2 isolate. When challenged with sera from convalescent individuals or anti-RBD monoclonal antibodies, the N501Y variant showed a minor, but significant elevated evasion potential of ACE-2/RBD antibody neutralization. The data suggest that the single asparagine to tyrosine substitution remarkable rise in affinity may be responsible for the higher transmission rate and severity of the B.1.1.7 variant.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. We have no restrictions with regards to data availability.

Article and author information

Author details

  1. Rafael Bayarri-Olmos

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Laust Bruun Johnsen

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Manja Idorn

    Department of Biomedicine, Aarhus University, Århus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Line S Reinert

    Department of Biomedicine, Aarhus University, Århus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Rosbjerg

    Recombinant Protein and Antibody Laboratory, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Søren Vang

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Cecilie Bo Hansen

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Helgstrand

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Jais Rose Bjelke

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Theresa Bak-Thomsen

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Soren Paludan

    Department of Biomedicine, Aarhus University, Århus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Garred

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  13. Mikkel-Ole Skjoedt

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    For correspondence
    moskjoedt@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1306-6482

Funding

Carlsbergfondet (CF20-0045)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

Novo Nordisk Fonden (NFF205A0063505)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

Novo Nordisk Fonden (NNF20OC0063436)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

Novo Nordisk Fonden (NNF20SA0064201)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kei Sato, The Institute of Medical Science, The University of Tokyo, Japan

Ethics

Animal experimentation: The Danish Animal Experiments Inspectorate has approved the experimental animal procedures and were carried out in accordance with the Danish Animal Welfare Act for the Care and Use of Animals for Scientific Purposes. (License ID 2019-15-0201-00090 and 2020-15-0201-00726). All procedures followed the recommendations of the Animal Facilities at the Universities of Copenhagen and Aarhus.

Human subjects: The collection and use of blood samples have been approved by the Regional Ethical Committee of the Capital Region of Denmark (H-20028627) and (H-20079890). The human studies were conducted in agreement with the Helsinki declaration. We have received informed consent to do the examinations included in this study including to publish data.

Version history

  1. Received: May 4, 2021
  2. Accepted: November 24, 2021
  3. Accepted Manuscript published: November 25, 2021 (version 1)
  4. Accepted Manuscript updated: November 29, 2021 (version 2)
  5. Version of Record published: December 1, 2021 (version 3)

Copyright

© 2021, Bayarri-Olmos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,148
    views
  • 117
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Bayarri-Olmos
  2. Laust Bruun Johnsen
  3. Manja Idorn
  4. Line S Reinert
  5. Anne Rosbjerg
  6. Søren Vang
  7. Cecilie Bo Hansen
  8. Charlotte Helgstrand
  9. Jais Rose Bjelke
  10. Theresa Bak-Thomsen
  11. Soren Paludan
  12. Peter Garred
  13. Mikkel-Ole Skjoedt
(2021)
The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice
eLife 10:e70002.
https://doi.org/10.7554/eLife.70002

Share this article

https://doi.org/10.7554/eLife.70002

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.