The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice

Abstract

The alpha/B.1.1.7 SARS-CoV-2 lineage emerged in autumn 2020 in the United Kingdom and transmitted rapidly until winter 2021 when it was responsible for most new COVID-19 cases in many European countries. The incidence domination was likely due to a fitness advantage that could be driven by the RBD residue change (N501Y), which also emerged independently in other Variants of Concern such as the beta/B.1.351 and gamma/P.1 strains. Here we present a functional characterization of the alpha/B.1.1.7 variant and show an eight-fold affinity increase towards human ACE-2. In accordance with this, transgenic hACE-2 mice showed a faster disease progression and severity after infection with a low dose of B.1.1.7, compared to an early 2020 SARS-CoV-2 isolate. When challenged with sera from convalescent individuals or anti-RBD monoclonal antibodies, the N501Y variant showed a minor, but significant elevated evasion potential of ACE-2/RBD antibody neutralization. The data suggest that the single asparagine to tyrosine substitution remarkable rise in affinity may be responsible for the higher transmission rate and severity of the B.1.1.7 variant.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. We have no restrictions with regards to data availability.

Article and author information

Author details

  1. Rafael Bayarri-Olmos

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Laust Bruun Johnsen

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Manja Idorn

    Department of Biomedicine, Aarhus University, Århus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Line S Reinert

    Department of Biomedicine, Aarhus University, Århus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Rosbjerg

    Recombinant Protein and Antibody Laboratory, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Søren Vang

    Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Cecilie Bo Hansen

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Helgstrand

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Jais Rose Bjelke

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Theresa Bak-Thomsen

    Novo Nordisk A/S, Måløv, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Søren R Paludan

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Garred

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  13. Mikkel-Ole Skjoedt

    Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
    For correspondence
    moskjoedt@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1306-6482

Funding

Carlsbergfondet (CF20-0045)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

Novo Nordisk Fonden (NFF205A0063505)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

Novo Nordisk Fonden (NNF20OC0063436)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

Novo Nordisk Fonden (NNF20SA0064201)

  • Rafael Bayarri-Olmos
  • Anne Rosbjerg
  • Peter Garred
  • Mikkel-Ole Skjoedt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kei Sato, The Institute of Medical Science, The University of Tokyo, Japan

Ethics

Animal experimentation: The Danish Animal Experiments Inspectorate has approved the experimental animal procedures and were carried out in accordance with the Danish Animal Welfare Act for the Care and Use of Animals for Scientific Purposes. (License ID 2019-15-0201-00090 and 2020-15-0201-00726). All procedures followed the recommendations of the Animal Facilities at the Universities of Copenhagen and Aarhus.

Human subjects: The collection and use of blood samples have been approved by the Regional Ethical Committee of the Capital Region of Denmark (H-20028627) and (H-20079890). The human studies were conducted in agreement with the Helsinki declaration. We have received informed consent to do the examinations included in this study including to publish data.

Version history

  1. Received: May 4, 2021
  2. Accepted: November 24, 2021
  3. Accepted Manuscript published: November 25, 2021 (version 1)
  4. Accepted Manuscript updated: November 29, 2021 (version 2)
  5. Version of Record published: December 1, 2021 (version 3)

Copyright

© 2021, Bayarri-Olmos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,160
    views
  • 118
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Bayarri-Olmos
  2. Laust Bruun Johnsen
  3. Manja Idorn
  4. Line S Reinert
  5. Anne Rosbjerg
  6. Søren Vang
  7. Cecilie Bo Hansen
  8. Charlotte Helgstrand
  9. Jais Rose Bjelke
  10. Theresa Bak-Thomsen
  11. Søren R Paludan
  12. Peter Garred
  13. Mikkel-Ole Skjoedt
(2021)
The alpha/B.1.1.7 SARS-CoV-2 variant exhibits significantly higher affinity for ACE-2 and requires lower inoculation doses to cause disease in K18-hACE2 mice
eLife 10:e70002.
https://doi.org/10.7554/eLife.70002

Share this article

https://doi.org/10.7554/eLife.70002

Further reading

    1. Immunology and Inflammation
    Phillip A Erice, Xinyan Huang ... Antony Rodriguez
    Research Article

    Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.