1. Structural Biology and Molecular Biophysics
Download icon

Transcription initiation at a consensus bacterial promoter proceeds via a 'bind-unwind-load-and-lock' mechanism

  1. Abhishek Mazumder  Is a corresponding author
  2. Richard H Ebright
  3. Achillefs Kapanidis  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Rutgers University, United States
Research Article
  • Cited 0
  • Views 468
  • Annotations
Cite this article as: eLife 2021;10:e70090 doi: 10.7554/eLife.70090


Transcription initiation starts with unwinding of promoter DNA by RNA polymerase (RNAP) to form a catalytically competent RNAP-promoter complex (RPO). Despite extensive study, the mechanism of promoter unwinding has remained unclear, in part due to the transient nature of intermediates on path to RPo. Here, using single-molecule unwinding-induced fluorescence enhancement to monitor promoter unwinding, and single-molecule fluorescence resonance energy transfer to monitor RNAP clamp conformation, we analyze RPo formation at a consensus bacterial core promoter. We find that the RNAP clamp is closed during promoter binding, remains closed during promoter unwinding, and then closes further, locking the unwound DNA in the RNAP active-centre cleft. Our work defines a new, 'bind-unwind-load-and-lock' model for the series of conformational changes occurring during promoter unwinding at a consensus bacterial promoter and provides the tools needed to examine the process in other organisms and at other promoters.

Data availability

All information for replication is included in the submission and data corresponding to each figure are provided as source data files. MATLAB software packages TwoTone and ebFRET are available on Github (https://github.com/annawang692/TwoTone2018 and http://ebfret.github.io/).

Article and author information

Author details

  1. Abhishek Mazumder

    Department of Physics, University of Oxford, Oxford, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
  2. Richard H Ebright

    Department of Chemistry, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8915-7140
  3. Achillefs Kapanidis

    Department of Physics, University of Oxford, Oxford, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6699-136X


Wellcome Trust (110164/Z/15/Z)

  • Achillefs Kapanidis

NIH Office of the Director (GM041376)

  • Richard H Ebright

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Publication history

  1. Received: May 6, 2021
  2. Accepted: October 6, 2021
  3. Accepted Manuscript published: October 11, 2021 (version 1)


© 2021, Mazumder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 468
    Page views
  • 79
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Daniel A Phillips et al.
    Research Article

    Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryogenic transmission electron microscopy reveals a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Solène N Lefebvre et al.
    Research Article Updated

    Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using simultaneous steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a three-state Monod-Wyman-Changeux model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit). It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a reorganization of a ‘central gating region’ involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.