Single-cell growth inference of Corynebacterium glutamicum reveals asymptoticallylinear growth

  1. Joris Jan Boudewijn Messelink
  2. Fabian Meyer
  3. Marc Bramkamp  Is a corresponding author
  4. Chase P Broedersz  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Christian-Albrechts-Universität zu Kiel, Germany

Abstract

Regulation of growth and cell size is crucial for the optimization of bacterial cellular function. So far, single bacterial cells have been found to grow predominantly exponentially, which implies the need for tight regulation to maintain cell size homeostasis. Here, we characterize the growth behavior of the apically growing bacterium Corynebacterium glutamicum using a novel broadly applicable inference method for single-cell growth dynamics. Using this approach, we find that C. glutamicum exhibits asymptotically linear single-cell growth. To explain this growth mode, we model elongation as being rate-limited by the apical growth mechanism. Our model accurately reproduces the inferred cell growth dynamics and is validated with elongation measurements on a transglycosylase deficient ΔrodA mutant. Finally, with simulations we show that the distribution of cell lengths is narrower for linear than exponential growth, suggesting that this asymptotically linear growth mode can act as a substitute for tight division length and division symmetry regulation.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joris Jan Boudewijn Messelink

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian Meyer

    Christian-Albrechts-Universität zu Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marc Bramkamp

    Christian-Albrechts-Universität zu Kiel, Kiel, Germany
    For correspondence
    bramkamp@ifam.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7704-3266
  4. Chase P Broedersz

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    c.broedersz@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7283-3704

Funding

Graduate School for Quantitative Biosciences Munich (Graduate Student Stipend)

  • Joris Jan Boudewijn Messelink

Deutsche Forschungsgemeinschaft (TRR 174 project P06)

  • Joris Jan Boudewijn Messelink
  • Chase P Broedersz

Deutsche Forschungsgemeinschaft (TRR 174 project P05)

  • Fabian Meyer
  • Marc Bramkamp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aleksandra M Walczak, École Normale Supérieure, France

Publication history

  1. Preprint posted: May 26, 2020 (view preprint)
  2. Received: May 6, 2021
  3. Accepted: October 1, 2021
  4. Accepted Manuscript published: October 4, 2021 (version 1)
  5. Accepted Manuscript updated: October 6, 2021 (version 2)
  6. Accepted Manuscript updated: November 3, 2021 (version 3)
  7. Version of Record published: November 16, 2021 (version 4)

Copyright

© 2021, Messelink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,059
    Page views
  • 238
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joris Jan Boudewijn Messelink
  2. Fabian Meyer
  3. Marc Bramkamp
  4. Chase P Broedersz
(2021)
Single-cell growth inference of Corynebacterium glutamicum reveals asymptoticallylinear growth
eLife 10:e70106.
https://doi.org/10.7554/eLife.70106
  1. Further reading

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Benjamin J Chadwick, Tuyetnhu Pham ... Xiaorong Lin
    Research Article

    The environmental pathogen Cryptococcus neoformans claims over 180,000 lives each year. Survival of this basidiomycete at host CO2 concentrations has only recently been considered an important virulence trait. Through screening gene knockout libraries constructed in a CO2-tolerant clinical strain, we found mutations leading to CO2 sensitivity are enriched in pathways activated by heat stress, including calcineurin, Ras1-Cdc24, cell wall integrity, and Regulator of Ace2 and Morphogenesis (RAM). Overexpression of Cbk1, the conserved terminal kinase of the RAM pathway, partially restored defects of these mutants at host CO2 or temperature levels. In ascomycetes such as Saccharomyces cerevisiae and Candida albicans, transcription factor Ace2 is an important target of Cbk1, activating genes responsible for cell separation. However, no Ace2 homolog or any downstream component of the RAM pathway has been identified in basidiomycetes. Through in vitro evolution and comparative genomics, we characterized mutations in suppressors of cbk1D in C. neoformans that partially rescued defects in CO2 tolerance, thermotolerance, and morphology. One suppressor is the RNA translation repressor Ssd1, which is highly conserved in ascomycetes and basidiomycetes. The other is a novel ribonuclease domain-containing protein, here named PSC1, which is present in basidiomycetes and humans but surprisingly absent in most ascomycetes. Loss of Ssd1 in cbk1D partially restored cryptococcal ability to survive and amplify in the inhalation and intravenous murine models of cryptococcosis. Our discoveries highlight the overlapping regulation of CO2 tolerance and thermotolerance, the essential role of the RAM pathway in cryptococcal adaptation to the host condition, and the potential importance of post-transcriptional control of virulence traits in this global pathogen.

    1. Ecology
    2. Microbiology and Infectious Disease
    Nardus Mollentze, Deborah Keen ... Daniel G Streicker
    Research Article

    Transmission of SARS-CoV-2 from humans to other species threatens wildlife conservation and may create novel sources of viral diversity for future zoonotic transmission. A variety of computational heuristics have been developed to pre-emptively identify susceptible host species based on variation in the angiotensin-converting enzyme 2 (ACE2) receptor used for viral entry. However, the predictive performance of these heuristics remains unknown. Using a newly compiled database of 96 species, we show that, while variation in ACE2 can be used by machine learning models to accurately predict animal susceptibility to sarbecoviruses (accuracy = 80.2%, binomial confidence interval [CI]: 70.8–87.6%), the sites informing predictions have no known involvement in virus binding and instead recapitulate host phylogeny. Models trained on host phylogeny alone performed equally well (accuracy = 84.4%, CI: 75.5–91.0%) and at a level equivalent to retrospective assessments of accuracy for previously published models. These results suggest that the predictive power of ACE2-based models derives from strong correlations with host phylogeny rather than processes which can be mechanistically linked to infection biology. Further, biased availability of ACE2 sequences misleads projections of the number and geographic distribution of at-risk species. Models based on host phylogeny reduce this bias, but identify a very large number of susceptible species, implying that model predictions must be combined with local knowledge of exposure risk to practically guide surveillance. Identifying barriers to viral infection or onward transmission beyond receptor binding and incorporating data which are independent of host phylogeny will be necessary to manage the ongoing risk of establishment of novel animal reservoirs of SARS-CoV-2.