Single-cell growth inference of Corynebacterium glutamicum reveals asymptotically linear growth

  1. Joris Jan Boudewijn Messelink
  2. Fabian Meyer
  3. Marc Bramkamp  Is a corresponding author
  4. Chase P Broedersz  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Christian-Albrechts-Universität zu Kiel, Germany

Abstract

Regulation of growth and cell size is crucial for the optimization of bacterial cellular function. So far, single bacterial cells have been found to grow predominantly exponentially, which implies the need for tight regulation to maintain cell size homeostasis. Here, we characterize the growth behavior of the apically growing bacterium Corynebacterium glutamicum using a novel broadly applicable inference method for single-cell growth dynamics. Using this approach, we find that C. glutamicum exhibits asymptotically linear single-cell growth. To explain this growth mode, we model elongation as being rate-limited by the apical growth mechanism. Our model accurately reproduces the inferred cell growth dynamics and is validated with elongation measurements on a transglycosylase deficient ΔrodA mutant. Finally, with simulations we show that the distribution of cell lengths is narrower for linear than exponential growth, suggesting that this asymptotically linear growth mode can act as a substitute for tight division length and division symmetry regulation.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joris Jan Boudewijn Messelink

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian Meyer

    Christian-Albrechts-Universität zu Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marc Bramkamp

    Christian-Albrechts-Universität zu Kiel, Kiel, Germany
    For correspondence
    bramkamp@ifam.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7704-3266
  4. Chase P Broedersz

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    c.broedersz@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7283-3704

Funding

Graduate School for Quantitative Biosciences Munich (Graduate Student Stipend)

  • Joris Jan Boudewijn Messelink

Deutsche Forschungsgemeinschaft (TRR 174 project P06)

  • Joris Jan Boudewijn Messelink
  • Chase P Broedersz

Deutsche Forschungsgemeinschaft (TRR 174 project P05)

  • Fabian Meyer
  • Marc Bramkamp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Messelink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,597
    views
  • 300
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joris Jan Boudewijn Messelink
  2. Fabian Meyer
  3. Marc Bramkamp
  4. Chase P Broedersz
(2021)
Single-cell growth inference of Corynebacterium glutamicum reveals asymptotically linear growth
eLife 10:e70106.
https://doi.org/10.7554/eLife.70106

Share this article

https://doi.org/10.7554/eLife.70106

Further reading

    1. Microbiology and Infectious Disease
    Emma Brown, Gemma Swinscoe ... Stephen Griffin
    Research Article Updated

    Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.

    1. Microbiology and Infectious Disease
    Yucheng Liang, Jean-Emmanuel Hugonnet ... Michel Arthur
    Research Advance

    Peptidoglycan (PG) is a giant macromolecule that completely surrounds bacterial cells and prevents lysis in hypo-osmotic environments. This net-like macromolecule is made of glycan strands linked to each other by two types of transpeptidases that form either 4→3 (PBPs) or 3→3 (LDTs) cross-links. Previously, we devised a heavy isotope-based PG full labeling method coupled to mass spectrometry to determine the mode of insertion of new subunits into the expanding PG network (Atze et al., 2022). We showed that PG polymerization operates according to different modes for the formation of the septum and of the lateral cell walls, as well as for bacterial growth in the presence or absence of β-lactams in engineered strains that can exclusively rely on LDTs for PG cross-linking when drugs are present. Here, we apply our method to the resolution of the kinetics of the reactions leading to the covalent tethering of the Braun lipoprotein (Lpp) to PG and the subsequent hydrolysis of that same covalent link. We find that Lpp and disaccharide-peptide subunits are independently incorporated into the expanding lateral cell walls. Newly synthesized septum PG appears to contain small amounts of tethered Lpp. LDTs did mediate intense shuffling of Lpp between PG stems leading to a dynamic equilibrium between the PG-tethered and free forms of Lpp.