Single-cell growth inference of Corynebacterium glutamicum reveals asymptoticallylinear growth

  1. Joris Jan Boudewijn Messelink
  2. Fabian Meyer
  3. Marc Bramkamp  Is a corresponding author
  4. Chase P Broedersz  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Christian-Albrechts-Universität zu Kiel, Germany

Abstract

Regulation of growth and cell size is crucial for the optimization of bacterial cellular function. So far, single bacterial cells have been found to grow predominantly exponentially, which implies the need for tight regulation to maintain cell size homeostasis. Here, we characterize the growth behavior of the apically growing bacterium Corynebacterium glutamicum using a novel broadly applicable inference method for single-cell growth dynamics. Using this approach, we find that C. glutamicum exhibits asymptotically linear single-cell growth. To explain this growth mode, we model elongation as being rate-limited by the apical growth mechanism. Our model accurately reproduces the inferred cell growth dynamics and is validated with elongation measurements on a transglycosylase deficient ΔrodA mutant. Finally, with simulations we show that the distribution of cell lengths is narrower for linear than exponential growth, suggesting that this asymptotically linear growth mode can act as a substitute for tight division length and division symmetry regulation.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joris Jan Boudewijn Messelink

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian Meyer

    Christian-Albrechts-Universität zu Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marc Bramkamp

    Christian-Albrechts-Universität zu Kiel, Kiel, Germany
    For correspondence
    bramkamp@ifam.uni-kiel.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7704-3266
  4. Chase P Broedersz

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    c.broedersz@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7283-3704

Funding

Graduate School for Quantitative Biosciences Munich (Graduate Student Stipend)

  • Joris Jan Boudewijn Messelink

Deutsche Forschungsgemeinschaft (TRR 174 project P06)

  • Joris Jan Boudewijn Messelink
  • Chase P Broedersz

Deutsche Forschungsgemeinschaft (TRR 174 project P05)

  • Fabian Meyer
  • Marc Bramkamp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aleksandra M Walczak, École Normale Supérieure, France

Version history

  1. Preprint posted: May 26, 2020 (view preprint)
  2. Received: May 6, 2021
  3. Accepted: October 1, 2021
  4. Accepted Manuscript published: October 4, 2021 (version 1)
  5. Accepted Manuscript updated: October 6, 2021 (version 2)
  6. Accepted Manuscript updated: November 3, 2021 (version 3)
  7. Version of Record published: November 16, 2021 (version 4)

Copyright

© 2021, Messelink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,471
    Page views
  • 275
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joris Jan Boudewijn Messelink
  2. Fabian Meyer
  3. Marc Bramkamp
  4. Chase P Broedersz
(2021)
Single-cell growth inference of Corynebacterium glutamicum reveals asymptoticallylinear growth
eLife 10:e70106.
https://doi.org/10.7554/eLife.70106

Share this article

https://doi.org/10.7554/eLife.70106

Further reading

    1. Microbiology and Infectious Disease
    Chiara Andolina, Wouter Graumans ... Teun Bousema
    Research Article

    It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34–501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171–2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Veronica Teresa Ober, George Boniface Githure ... Michael Boshart
    Research Article

    Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.