Smartphone Screen Testing, a novel pre-diagnostic method to identify SARS-CoV-2 infectious individuals
Abstract
The COVID-19 pandemic will likely take years to control globally, and constant epidemic surveillance will be required to limit the spread of SARS-CoV-2, especially considering the emergence of new variants that could hamper the effect of vaccination efforts. We developed a simple and robust - Phone Screen Testing (PoST) - method to detect positive SARS-CoV-2 individuals by RT-PCR testing of smartphone screen swab samples. We show that 81.3-100% of individuals with high-viral load SARS-CoV-2 nasopharyngeal positive samples also test positive for PoST, suggesting this method is effective in identifying COVID-19 contagious individuals. Furthermore, we successfully identified polymorphisms associated with SARS-CoV-2 Alpha, Beta and Gamma variants, in SARS-CoV-2 positive PoST samples. Overall, we report that PoST is a new non-invasive, cost-effective, and easy to implement smartphone-based smart alternative for SARS-CoV-2 testing, which could help to contain COVID-19 outbreaks and identification of variants of concern in the years to come.
Data availability
All the data used generated by this study was provided in the uploaded manuscript and source files.
Article and author information
Author details
Funding
Moorfields Eye Charity (Career Development Award 001155)
- Rodrigo M Young
Moorfields Eye Charity (Springboard Award GR001210)
- Rodrigo M Young
Agencia Nacional de Investigacion y Desarrollo Chile (ANID-Covid0789)
- Luis A Quiñones
Agencia Nacional de Investigacion y Desarrollo Chile (ANID-Covid1038)
- Ana M Sandino
Agencia Nacional de Investigacion y Desarrollo Chile (ANID-Covid1038)
- Ana M Sandino
Fondecyt (1211841)
- Felipe Reyes-Lopez
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent and consent to publish was obtained from all the individuals that participated in this study before performing the sampling process. This has been made explicit in the materials and methods section of the article. Ethical approval was obtained by the Ethics and Scientific Committee of Clinica Davila (Santiago, Chile) under the approval titled: "Identificación de marcadores de riesgo asociados a la severidad del Covid-19 en el microbioma respiratorio".
Reviewing Editor
- Joshua T Schiffer, Fred Hutchinson Cancer Research Center, United States
Publication history
- Received: May 16, 2021
- Accepted: June 21, 2021
- Accepted Manuscript published: June 22, 2021 (version 1)
- Version of Record published: July 12, 2021 (version 2)
Copyright
© 2021, Young et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,041
- Page views
-
- 438
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
Mobile phones could be used to test for COVID-19
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Darunavir (DRV) is exceptional among potent HIV-1 protease inhibitors (PIs) in high drug concentrations that are achieved in vivo. Little is known about the de novo resistance pathway for DRV. We selected for resistance to high drug concentrations against 10 PIs and their structural precursor DRV. Mutations accumulated through two pathways (anchored by protease mutations I50V or I84V). Small changes in the inhibitor P1'-equivalent position led to preferential use of one pathway over the other. Changes in the inhibitor P2'-equivalent position determined differences in potency that were retained in the resistant viruses and that impacted the selected mutations. Viral variants from the two pathways showed differential selection of compensatory mutations in Gag cleavage sites. These results reveal the high level of selective pressure that is attainable with fifth-generation PIs and how features of the inhibitor affect both the resistance pathway and the residual potency in the face of resistance.