Smartphone Screen Testing, a novel pre-diagnostic method to identify SARS-CoV-2 infectious individuals
Abstract
The COVID-19 pandemic will likely take years to control globally, and constant epidemic surveillance will be required to limit the spread of SARS-CoV-2, especially considering the emergence of new variants that could hamper the effect of vaccination efforts. We developed a simple and robust - Phone Screen Testing (PoST) - method to detect positive SARS-CoV-2 individuals by RT-PCR testing of smartphone screen swab samples. We show that 81.3-100% of individuals with high-viral load SARS-CoV-2 nasopharyngeal positive samples also test positive for PoST, suggesting this method is effective in identifying COVID-19 contagious individuals. Furthermore, we successfully identified polymorphisms associated with SARS-CoV-2 Alpha, Beta and Gamma variants, in SARS-CoV-2 positive PoST samples. Overall, we report that PoST is a new non-invasive, cost-effective, and easy to implement smartphone-based smart alternative for SARS-CoV-2 testing, which could help to contain COVID-19 outbreaks and identification of variants of concern in the years to come.
Data availability
All the data used generated by this study was provided in the uploaded manuscript and source files.
Article and author information
Author details
Funding
Moorfields Eye Charity (Career Development Award 001155)
- Rodrigo M Young
Moorfields Eye Charity (Springboard Award GR001210)
- Rodrigo M Young
Agencia Nacional de Investigacion y Desarrollo Chile (ANID-Covid0789)
- Luis A Quiñones
Agencia Nacional de Investigacion y Desarrollo Chile (ANID-Covid1038)
- Ana M Sandino
Agencia Nacional de Investigacion y Desarrollo Chile (ANID-Covid1038)
- Ana M Sandino
Fondecyt (1211841)
- Felipe Reyes-Lopez
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent and consent to publish was obtained from all the individuals that participated in this study before performing the sampling process. This has been made explicit in the materials and methods section of the article. Ethical approval was obtained by the Ethics and Scientific Committee of Clinica Davila (Santiago, Chile) under the approval titled: "Identificación de marcadores de riesgo asociados a la severidad del Covid-19 en el microbioma respiratorio".
Reviewing Editor
- Joshua T Schiffer, Fred Hutchinson Cancer Research Center, United States
Version history
- Received: May 16, 2021
- Accepted: June 21, 2021
- Accepted Manuscript published: June 22, 2021 (version 1)
- Version of Record published: July 12, 2021 (version 2)
Copyright
© 2021, Young et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,322
- Page views
-
- 450
- Downloads
-
- 7
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
Mobile phones could be used to test for COVID-19
-
- Genetics and Genomics
- Microbiology and Infectious Disease
Plasmids enable the dissemination of antimicrobial resistance (AMR) in common Enterobacterales pathogens, representing a major public health challenge. However, the extent of plasmid sharing and evolution between Enterobacterales causing human infections and other niches remains unclear, including the emergence of resistance plasmids. Dense, unselected sampling is essential to developing our understanding of plasmid epidemiology and designing appropriate interventions to limit the emergence and dissemination of plasmid-associated AMR. We established a geographically and temporally restricted collection of human bloodstream infection (BSI)-associated, livestock-associated (cattle, pig, poultry, and sheep faeces, farm soils) and wastewater treatment work (WwTW)-associated (influent, effluent, waterways upstream/downstream of effluent outlets) Enterobacterales. Isolates were collected between 2008 and 2020 from sites <60 km apart in Oxfordshire, UK. Pangenome analysis of plasmid clusters revealed shared ‘backbones’, with phylogenies suggesting an intertwined ecology where well-conserved plasmid backbones carry diverse accessory functions, including AMR genes. Many plasmid ‘backbones’ were seen across species and niches, raising the possibility that plasmid movement between these followed by rapid accessory gene change could be relatively common. Overall, the signature of identical plasmid sharing is likely to be a highly transient one, implying that plasmid movement might be occurring at greater rates than previously estimated, raising a challenge for future genomic One Health studies.