CRMP4-mediated fornix development involves semaphorin-3E signaling pathway

  1. Benoît Boulan
  2. Charlotte Ravanello
  3. Amandine Peyrel
  4. Christophe Bosc
  5. Christian Delphin
  6. Florence Appaix
  7. Eric Denarier
  8. Alexandra Kraut
  9. Muriel Jacquier-Sarlin
  10. Alyson Fournier
  11. Annie Andrieux
  12. Sylvie Gory-Fauré  Is a corresponding author
  13. Jean-Christophe Deloulme  Is a corresponding author
  1. Institut de Recherches Cliniques de Montréal, Canada
  2. University Grenoble Alpes, France
  3. Université Grenoble Alpes, France
  4. McGill University, Canada

Abstract

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-Associated Protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the Collapsin Response Mediator Protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within Detergent-Resistant Membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2, Figure 4, Figure 5, Figure 6 , Figure 7, Figure 8, Figure 9, Figure 10 and supplementary File 1

Article and author information

Author details

  1. Benoît Boulan

    Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6793-5378
  2. Charlotte Ravanello

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Amandine Peyrel

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Christophe Bosc

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Delphin

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Florence Appaix

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric Denarier

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4169-397X
  8. Alexandra Kraut

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Muriel Jacquier-Sarlin

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8501-7511
  10. Alyson Fournier

    Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Annie Andrieux

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4022-6405
  12. Sylvie Gory-Fauré

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    For correspondence
    sylvie.gory-faure@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Jean-Christophe Deloulme

    Inserm, U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    For correspondence
    Jean-Christophe.deloulme@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2234-5865

Funding

Agence Nationale de la Recherche (2010- Blanc-120201 CBioS)

  • Christophe Bosc

Agence Nationale de la Recherche (2017-CE11-0026 MAMAs)

  • Annie Andrieux

The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study protocol was approved by the local animal welfare committee (Comité Local GIN, C2EA-04 - APAFIS number 8303-2016060110523424) and complied with EU guidelines (directive 2010/63/EU). Every precaution was taken to minimize the number of animals used and stress to animals during experiments.

Copyright

© 2021, Boulan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 871
    views
  • 138
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benoît Boulan
  2. Charlotte Ravanello
  3. Amandine Peyrel
  4. Christophe Bosc
  5. Christian Delphin
  6. Florence Appaix
  7. Eric Denarier
  8. Alexandra Kraut
  9. Muriel Jacquier-Sarlin
  10. Alyson Fournier
  11. Annie Andrieux
  12. Sylvie Gory-Fauré
  13. Jean-Christophe Deloulme
(2021)
CRMP4-mediated fornix development involves semaphorin-3E signaling pathway
eLife 10:e70361.
https://doi.org/10.7554/eLife.70361

Share this article

https://doi.org/10.7554/eLife.70361

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Paolo Petazzi, Telma Ventura ... Antonella Fidanza
    Tools and Resources

    A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.

    1. Developmental Biology
    Margaret Hines, Elias Oxman ... Irene Zohn
    Insight

    A new single-cell atlas of gene expression provides insights into the patterning of the neural plate of mice.