CRMP4-mediated fornix development involves semaphorin-3E signaling pathway

  1. Benoît Boulan
  2. Charlotte Ravanello
  3. Amandine Peyrel
  4. Christophe Bosc
  5. Christian Delphin
  6. Florence Appaix
  7. Eric Denarier
  8. Alexandra Kraut
  9. Muriel Jacquier-Sarlin
  10. Alyson Fournier
  11. Annie Andrieux
  12. Sylvie Gory-Fauré  Is a corresponding author
  13. Jean-Christophe Deloulme  Is a corresponding author
  1. Institut de Recherches Cliniques de Montréal, Canada
  2. Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, France
  3. Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, France
  4. McGill University, Canada

Abstract

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-Associated Protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the Collapsin Response Mediator Protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within Detergent-Resistant Membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2, Figure 4, Figure 5, Figure 6 , Figure 7, Figure 8, Figure 9, Figure 10 and supplementary File 1

Article and author information

Author details

  1. Benoît Boulan

    Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6793-5378
  2. Charlotte Ravanello

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Amandine Peyrel

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Christophe Bosc

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Delphin

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Florence Appaix

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric Denarier

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4169-397X
  8. Alexandra Kraut

    Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Muriel Jacquier-Sarlin

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8501-7511
  10. Alyson Fournier

    Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Annie Andrieux

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4022-6405
  12. Sylvie Gory-Fauré

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    For correspondence
    sylvie.gory-faure@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
  13. Jean-Christophe Deloulme

    Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
    For correspondence
    Jean-Christophe.deloulme@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2234-5865

Funding

Agence Nationale de la Recherche (2010- Blanc-120201 CBioS)

  • Christophe Bosc

Agence Nationale de la Recherche (2017-CE11-0026 MAMAs)

  • Annie Andrieux

The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study protocol was approved by the local animal welfare committee (Comité Local GIN, C2EA-04 - APAFIS number 8303-2016060110523424) and complied with EU guidelines (directive 2010/63/EU). Every precaution was taken to minimize the number of animals used and stress to animals during experiments.

Copyright

© 2021, Boulan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 867
    views
  • 138
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benoît Boulan
  2. Charlotte Ravanello
  3. Amandine Peyrel
  4. Christophe Bosc
  5. Christian Delphin
  6. Florence Appaix
  7. Eric Denarier
  8. Alexandra Kraut
  9. Muriel Jacquier-Sarlin
  10. Alyson Fournier
  11. Annie Andrieux
  12. Sylvie Gory-Fauré
  13. Jean-Christophe Deloulme
(2021)
CRMP4-mediated fornix development involves semaphorin-3E signaling pathway
eLife 10:e70361.
https://doi.org/10.7554/eLife.70361

Share this article

https://doi.org/10.7554/eLife.70361

Further reading

    1. Developmental Biology
    Chloe Santos, Abigail R Marshall ... Andrew J Copp
    Research Article

    Primary and secondary neurulation – processes that form the spinal cord – are incompletely understood in humans, largely due to the challenge of accessing neurulation-stage embryos (3–7 weeks post-conception). Here, we describe findings from 108 human embryos, spanning Carnegie stages (CS) 10–18. Primary neurulation is completed at the posterior neuropore with neural plate bending that is similar, but not identical, to the mouse. Secondary neurulation proceeds from CS13 with formation of a single lumen as in mouse, not coalescence of multiple lumens as in chick. There is no evidence of a ‘transition zone’ from primary to secondary neurulation. Secondary neural tube ‘splitting’ occurs in 60% of proximal human tail regions. A somite is formed every 7 hr in human, compared with 2 hr in mice and a 5 hr ‘segmentation clock’ in human organoids. Termination of axial elongation occurs after down-regulation of WNT3A and FGF8 in the CS15 embryonic tailbud, with a ‘burst’ of apoptosis that may remove neuro-mesodermal progenitors. Hence, the main differences between human and mouse/rat spinal neurulation relate to timing. Investigators are now attempting to recapitulate neurulation events in stem cell-derived organoids, and our results provide ‘normative data’ for interpretation of such research findings.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally-induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, sperm altered H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of deregulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity-effects on placenta development and function as one potential developmental route to offspring metabolic disease.