Group II truncated haemoglobin YjbI prevents reactive oxygen species-induced protein aggregation in Bacillus subtilis

  1. Takeshi Imai  Is a corresponding author
  2. Ryuta Tobe
  3. Koji Honda
  4. Mai Tanaka
  5. Jun Kawamoto
  6. Hisaaki Mihara  Is a corresponding author
  1. Hyogo Prefectural Institute of Technology, Japan
  2. Ritsumeikan University, Japan
  3. Kyoto University, Japan

Abstract

Oxidative stress–mediated formation of protein hydroperoxides can induce irreversible fragmentation of the peptide backbone and accumulation of cross-linked protein aggregates, leading to cellular toxicity, dysfunction, and death. However, how bacteria protect themselves from damages caused by protein hydroperoxidation is unknown. Here we show that YjbI, a group II truncated haemoglobin from Bacillus subtilis, prevents oxidative aggregation of cell-surface proteins by its protein hydroperoxide peroxidase-like activity, which removes hydroperoxide groups from oxidised proteins. Disruption of the yjbI gene in B. subtilis lowered biofilm water repellence, which associated with the cross-linked aggregation of the biofilm matrix protein TasA. YjbI was localised to the cell surface or the biofilm matrix, and the sensitivity of planktonically grown cells to generators of reactive oxygen species was significantly increased upon yjbI disruption, suggesting that YjbI pleiotropically protects labile cell-surface proteins from oxidative damage. YjbI removed hydroperoxide residues from the model oxidized protein substrate bovine serum albumin and biofilm component TasA, preventing oxidative aggregation in vitro. Furthermore, the replacement of Tyr63 near the haem of YjbI with phenylalanine resulted in the loss of its protein peroxidase-like activity, and the mutant gene failed to rescue biofilm water repellency and resistance to oxidative stress induced by hypochlorous acid in the yjbI-deficient strain. These findings provide new insights into the role of truncated haemoglobin and the importance of hydroperoxide removal from proteins in the survival of aerobic bacteria.

Data availability

All data is available within the text, figures, and tables of the manuscript. Source data files have been provided for Figures 2, 3, Figure 2-figure supplement 1, Figure 3-figure supplement 1 and Figure 4-figure supplement 1.

Article and author information

Author details

  1. Takeshi Imai

    Hyogo Prefectural Institute of Technology, Hyogo, Japan
    For correspondence
    imai@hyogo-kg.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7387-6212
  2. Ryuta Tobe

    Department of Biotechnology, Ritsumeikan University, Shiga, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Koji Honda

    Hyogo Prefectural Institute of Technology, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Mai Tanaka

    Department of Biotechnology, Ritsumeikan University, Shiga, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Kawamoto

    Institute for Chemical Research, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Hisaaki Mihara

    Department of Biotechnology, Ritsumeikan University, Shiga, Japan
    For correspondence
    mihara@fc.ritsumei.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (18K14383)

  • Takeshi Imai

Japan Society for the Promotion of Science (20K15446)

  • Takeshi Imai

Ritsumeikan Global Innovation Research Organization, Ritsumeikan University

  • Hisaaki Mihara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Imai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 670
    views
  • 191
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takeshi Imai
  2. Ryuta Tobe
  3. Koji Honda
  4. Mai Tanaka
  5. Jun Kawamoto
  6. Hisaaki Mihara
(2022)
Group II truncated haemoglobin YjbI prevents reactive oxygen species-induced protein aggregation in Bacillus subtilis
eLife 11:e70467.
https://doi.org/10.7554/eLife.70467

Share this article

https://doi.org/10.7554/eLife.70467

Further reading

    1. Biochemistry and Chemical Biology
    Swarang Sachin Pundlik, Alok Barik ... Arvind Ramanathan
    Short Report

    Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase–Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Duk-Su Koh, Anastasiia Stratiievska ... Sharona E Gordon
    Tools and Resources

    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.