Pathway specific effects of ADSL deficiency on neurodevelopment

  1. Ilaria Dutto
  2. Julian Gerhards
  3. Antonio Herrera
  4. Olga Souckova
  5. Václava Škopová
  6. Jordann Smak
  7. Alexandra Junza
  8. Oscar Yanes
  9. Cedric Boeckx Prof
  10. Martin D Burkhalter
  11. Marie Zikánová
  12. Sebastian Pons
  13. Melanie Philipp
  14. Jens Lüders
  15. Travis H Stracker  Is a corresponding author
  1. Institute for Research in Biomedicine, Spain
  2. University of Tubingen, Germany
  3. Instituto de Biología Molecular de Barcelona, Spain
  4. Charles University, Czech Republic
  5. National Cancer Institute, United States
  6. Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Spain
  7. University of Barcelona, Spain
  8. University of Tübingen, Germany

Abstract

Adenylosuccinate Lyase (ADSL) functions in de novo purine biosynthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.

Data availability

Most data generated or analysed during this study are included in the manuscript and supporting source data files. Additional source data is available via Figshare, https://doi.org/10.25452/figshare.plus.c.5793614

The following data sets were generated

Article and author information

Author details

  1. Ilaria Dutto

    Institute for Research in Biomedicine, Barcelona, Spain
    Competing interests
    No competing interests declared.
  2. Julian Gerhards

    Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tubingen, Tubingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7005-1618
  3. Antonio Herrera

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6248-1001
  4. Olga Souckova

    Department of Paediatrics and Inherited Metabolic Disorders, Charles University, Prague, Czech Republic
    Competing interests
    No competing interests declared.
  5. Václava Škopová

    Department of Paediatrics and Inherited Metabolic Disorders, Charles University, Prague, Czech Republic
    Competing interests
    No competing interests declared.
  6. Jordann Smak

    Center for Cancer Research, Radiation Oncology Branch, National Cancer Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Alexandra Junza

    Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Madrid, Spain
    Competing interests
    No competing interests declared.
  8. Oscar Yanes

    Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Madrid, Spain
    Competing interests
    No competing interests declared.
  9. Cedric Boeckx Prof

    Institute of Complex Systems, University of Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8882-9718
  10. Martin D Burkhalter

    Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8646-3131
  11. Marie Zikánová

    Department of Paediatrics and Inherited Metabolic Disorders, Charles University, Prague, Czech Republic
    Competing interests
    No competing interests declared.
  12. Sebastian Pons

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
    Competing interests
    No competing interests declared.
  13. Melanie Philipp

    Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tubingen, Tubingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2714-965X
  14. Jens Lüders

    Institute for Research in Biomedicine, Barcelona, Spain
    Competing interests
    Jens Lüders, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9018-7977
  15. Travis H Stracker

    Center for Cancer Research, Radiation Oncology Branch, National Cancer Institute, Bethesda, United States
    For correspondence
    travis.stracker@nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8650-2081

Funding

H2020 Marie Skłodowska-Curie Actions (754510)

  • Ilaria Dutto

Ministerio de Ciencia, Innovación y Universidades (PGC2018-099562-B-I00)

  • Jens Lüders

Ministerio de Ciencia, Innovación y Universidades (PGC2018-095616-B-I00)

  • Travis H Stracker

Deutsche Forschungsgemeinschaft (DFG PH144/4-1)

  • Melanie Philipp

Deutsche Forschungsgemeinschaft (PH144/6-1)

  • Melanie Philipp

Agència de Gestió d'Ajuts Universitaris i de Recerca (2017 SGR)

  • Jens Lüders
  • Travis H Stracker

Charles University (PROGRES Q26/LF1)

  • Olga Souckova
  • Václava Škopová
  • Marie Zikánová

Ministry of Science, Innovation and Universities (BFU2017-83562-P)

  • Sebastian Pons

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,745
    views
  • 255
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilaria Dutto
  2. Julian Gerhards
  3. Antonio Herrera
  4. Olga Souckova
  5. Václava Škopová
  6. Jordann Smak
  7. Alexandra Junza
  8. Oscar Yanes
  9. Cedric Boeckx Prof
  10. Martin D Burkhalter
  11. Marie Zikánová
  12. Sebastian Pons
  13. Melanie Philipp
  14. Jens Lüders
  15. Travis H Stracker
(2022)
Pathway specific effects of ADSL deficiency on neurodevelopment
eLife 11:e70518.
https://doi.org/10.7554/eLife.70518

Share this article

https://doi.org/10.7554/eLife.70518

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.