Framework for rapid comparison of extracellular vesicle isolation methods

  1. Dmitry Ter-Ovanesyan
  2. Maia Norman
  3. Roey Lazarovits
  4. Wendy Trieu
  5. Ju-Hyun Lee
  6. George Church
  7. David R Walt  Is a corresponding author
  1. Wyss Institute for Biologically Inspired Engineering, United States

Abstract

Extracellular vesicles (EVs) are released by all cells into biofluids and hold great promise as reservoirs of disease biomarkers. One of the main challenges in studying EVs is a lack of methods to quantify EVs that are sensitive enough and can differentiate EVs from similarly sized lipoproteins and protein aggregates. We demonstrate the use of ultrasensitive, single molecule array (Simoa) assays for the quantification of EVs using three widely expressed transmembrane proteins: the tetraspanins CD9, CD63, and CD81. Using Simoa to measure these three EV markers, as well as albumin to measure protein contamination, we were able to compare the relative efficiency and purity of several commonly used EV isolation methods in plasma and cerebrospinal fluid (CSF): ultracentrifugation, precipitation, and size exclusion chromatography (SEC). We further used these assays, all on one platform, to improve SEC isolation from plasma and CSF. Our results highlight the utility of quantifying EV proteins using Simoa and provide a rapid framework for comparing and improving EV isolation methods from biofluids.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dmitry Ter-Ovanesyan

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    Dmitry Ter-Ovanesyan, The authors have filed intellectual property related to methods for isolating extracellular vesicles..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1134-0073
  2. Maia Norman

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    Maia Norman, The authors have filed intellectual property related to methods for isolating extracellular vesicles..
  3. Roey Lazarovits

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    No competing interests declared.
  4. Wendy Trieu

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    No competing interests declared.
  5. Ju-Hyun Lee

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6728-2071
  6. George Church

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    George Church, GMC commercial interests: http://arep.med.harvard.edu/gmc/tech.html..
  7. David R Walt

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    For correspondence
    dwalt@bwh.harvard.edu
    Competing interests
    David R Walt, DRW has a financial interest in Quanterix Corporation, a company that develops an ultra-sensitive digital immunoassay platform. He is an inventor of the Simoa technology, a founder of the company and also serves on its Board of Directors. Dr. Walt's interests were reviewed and are managed by BWH. The authors have filed aprovisional patent (WO2021163416A1) on methods for EV isolationmeasuring andpurifying EVs..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5524-7348

Funding

Chan Zuckerberg Initiative (NDCN Collaborative Science Award)

  • Dmitry Ter-Ovanesyan
  • Maia Norman
  • Roey Lazarovits
  • Wendy Trieu
  • Ju-Hyun Lee
  • George Church
  • David R Walt

Open Philanthropy Project

  • Dmitry Ter-Ovanesyan
  • Maia Norman
  • Roey Lazarovits
  • Wendy Trieu
  • Ju-Hyun Lee
  • David R Walt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ter-Ovanesyan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,732
    views
  • 998
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Ter-Ovanesyan
  2. Maia Norman
  3. Roey Lazarovits
  4. Wendy Trieu
  5. Ju-Hyun Lee
  6. George Church
  7. David R Walt
(2021)
Framework for rapid comparison of extracellular vesicle isolation methods
eLife 10:e70725.
https://doi.org/10.7554/eLife.70725

Share this article

https://doi.org/10.7554/eLife.70725

Further reading

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.