Framework for rapid comparison of extracellular vesicle isolation methods

  1. Dmitry Ter-Ovanesyan
  2. Maia Norman
  3. Roey Lazarovits
  4. Wendy Trieu
  5. Ju-Hyun Lee
  6. George Church
  7. David R Walt  Is a corresponding author
  1. Wyss Institute for Biologically Inspired Engineering, United States

Abstract

Extracellular vesicles (EVs) are released by all cells into biofluids and hold great promise as reservoirs of disease biomarkers. One of the main challenges in studying EVs is a lack of methods to quantify EVs that are sensitive enough and can differentiate EVs from similarly sized lipoproteins and protein aggregates. We demonstrate the use of ultrasensitive, single molecule array (Simoa) assays for the quantification of EVs using three widely expressed transmembrane proteins: the tetraspanins CD9, CD63, and CD81. Using Simoa to measure these three EV markers, as well as albumin to measure protein contamination, we were able to compare the relative efficiency and purity of several commonly used EV isolation methods in plasma and cerebrospinal fluid (CSF): ultracentrifugation, precipitation, and size exclusion chromatography (SEC). We further used these assays, all on one platform, to improve SEC isolation from plasma and CSF. Our results highlight the utility of quantifying EV proteins using Simoa and provide a rapid framework for comparing and improving EV isolation methods from biofluids.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Dmitry Ter-Ovanesyan

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    Dmitry Ter-Ovanesyan, The authors have filed intellectual property related to methods for isolating extracellular vesicles..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1134-0073
  2. Maia Norman

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    Maia Norman, The authors have filed intellectual property related to methods for isolating extracellular vesicles..
  3. Roey Lazarovits

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    No competing interests declared.
  4. Wendy Trieu

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    No competing interests declared.
  5. Ju-Hyun Lee

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6728-2071
  6. George Church

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    Competing interests
    George Church, GMC commercial interests: http://arep.med.harvard.edu/gmc/tech.html..
  7. David R Walt

    Wyss Institute for Biologically Inspired Engineering, Boston, United States
    For correspondence
    dwalt@bwh.harvard.edu
    Competing interests
    David R Walt, DRW has a financial interest in Quanterix Corporation, a company that develops an ultra-sensitive digital immunoassay platform. He is an inventor of the Simoa technology, a founder of the company and also serves on its Board of Directors. Dr. Walt's interests were reviewed and are managed by BWH. The authors have filed aprovisional patent (WO2021163416A1) on methods for EV isolationmeasuring andpurifying EVs..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5524-7348

Funding

Chan Zuckerberg Initiative (NDCN Collaborative Science Award)

  • Dmitry Ter-Ovanesyan
  • Maia Norman
  • Roey Lazarovits
  • Wendy Trieu
  • Ju-Hyun Lee
  • George Church
  • David R Walt

Open Philanthropy Project

  • Dmitry Ter-Ovanesyan
  • Maia Norman
  • Roey Lazarovits
  • Wendy Trieu
  • Ju-Hyun Lee
  • David R Walt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ter-Ovanesyan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,395
    views
  • 950
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Ter-Ovanesyan
  2. Maia Norman
  3. Roey Lazarovits
  4. Wendy Trieu
  5. Ju-Hyun Lee
  6. George Church
  7. David R Walt
(2021)
Framework for rapid comparison of extracellular vesicle isolation methods
eLife 10:e70725.
https://doi.org/10.7554/eLife.70725

Share this article

https://doi.org/10.7554/eLife.70725

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Julia Shangguan, Ronald S Rock
    Research Article

    Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.