Inference of the SARS-CoV-2 generation time using UK household data

  1. William Stephen Hart  Is a corresponding author
  2. Sam Abbott
  3. Akira Endo
  4. Joel Hellewell
  5. Elizabeth Miller
  6. Nick Andrews
  7. Philip K Maini
  8. Sebastian Funk
  9. Robin N Thompson
  1. University of Oxford, United Kingdom
  2. London School of Hygiene and Tropical Medicine, United Kingdom
  3. Public Health England, United Kingdom
  4. University of Warwick, United Kingdom

Abstract

The distribution of the generation time (the interval between individuals becoming infected and transmitting the virus) characterises changes in the transmission risk during SARS-CoV-2 infections. Inferring the generation time distribution is essential to plan and assess public health measures. We previously developed a mechanistic approach for estimating the generation time, which provided an improved fit to data from the early months of the COVID-19 pandemic (December 2019-March 2020) compared to existing models (Hart et al., 2021). However, few estimates of the generation time exist based on data from later in the pandemic. Here, using data from a household study conducted from March-November 2020 in the UK, we provide updated estimates of the generation time. We considered both a commonly used approach in which the transmission risk is assumed to be independent of when symptoms develop, and our mechanistic model in which transmission and symptoms are linked explicitly. Assuming independent transmission and symptoms, we estimated a mean generation time (4.2 days, 95% credible interval 3.3-5.3 days) similar to previous estimates from other countries, but with a higher standard deviation (4.9 days, 3.0-8.3 days). Using our mechanistic approach, we estimated a longer mean generation time (5.9 days, 5.2-7.0 days) and a similar standard deviation (4.8 days, 4.0-6.3 days). As well as estimating the generation time using data from the entire study period, we also considered whether the generation time varied temporally. Both models suggest a shorter mean generation time in September-November 2020 compared to earlier months. Since the SARS-CoV-2 generation time appears to be changing, further data collection and analysis is necessary to continue to monitor ongoing transmission and inform future public health policy decisions.

Data availability

All data generated or analysed during this study are included in the manuscript and its supporting files; a Source Data file has been provided for Figure 1. Code for reproducing our results is available at https://github.com/will-s-hart/UK-generation-times.

The following data sets were generated

Article and author information

Author details

  1. William Stephen Hart

    Mathematical Institute, University of Oxford, Oxford, United Kingdom
    For correspondence
    william.hart@keble.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2504-6860
  2. Sam Abbott

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Akira Endo

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    Akira Endo, received a research grant from Taisho Pharmaceutical Co., Ltd..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6377-7296
  4. Joel Hellewell

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Elizabeth Miller

    Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-0097
  6. Nick Andrews

    Data and Analytical Sciences, UK Health Security Agency, Public Health England, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Philip K Maini

    Mathematical Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0146-9164
  8. Sebastian Funk

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2842-3406
  9. Robin N Thompson

    Mathematics Institute, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8545-5212

Funding

Engineering and Physical Sciences Research Council (Excellence Award,EP/R513295/1)

  • William Stephen Hart

National Institute for Health Research (NIHR200929)

  • Elizabeth Miller

Taisho Pharmaceutical Co., Ltd (Research grant)

  • Akira Endo

UKRI (EP/V053507/1)

  • Robin N Thompson

The authors had sole responsibility for the study design, data collection, data analysis, data interpretation, and writing of the report.

Reviewing Editor

  1. Jennifer Flegg, The University of Melbourne, Australia

Version history

  1. Received: May 29, 2021
  2. Preprint posted: May 30, 2021 (view preprint)
  3. Accepted: February 7, 2022
  4. Accepted Manuscript published: February 9, 2022 (version 1)
  5. Version of Record published: March 30, 2022 (version 2)

Copyright

© 2022, Hart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,260
    Page views
  • 186
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Stephen Hart
  2. Sam Abbott
  3. Akira Endo
  4. Joel Hellewell
  5. Elizabeth Miller
  6. Nick Andrews
  7. Philip K Maini
  8. Sebastian Funk
  9. Robin N Thompson
(2022)
Inference of the SARS-CoV-2 generation time using UK household data
eLife 11:e70767.
https://doi.org/10.7554/eLife.70767

Share this article

https://doi.org/10.7554/eLife.70767

Further reading

    1. Epidemiology and Global Health
    David Robert Grimes
    Research Advance Updated

    In biomedical science, it is a reality that many published results do not withstand deeper investigation, and there is growing concern over a replicability crisis in science. Recently, Ellipse of Insignificance (EOI) analysis was introduced as a tool to allow researchers to gauge the robustness of reported results in dichotomous outcome design trials, giving precise deterministic values for the degree of miscoding between events and non-events tolerable simultaneously in both control and experimental arms (Grimes, 2022). While this is useful for situations where potential miscoding might transpire, it does not account for situations where apparently significant findings might result from accidental or deliberate data redaction in either the control or experimental arms of an experiment, or from missing data or systematic redaction. To address these scenarios, we introduce Region of Attainable Redaction (ROAR), a tool that extends EOI analysis to account for situations of potential data redaction. This produces a bounded cubic curve rather than an ellipse, and we outline how this can be used to identify potential redaction through an approach analogous to EOI. Applications are illustrated, and source code, including a web-based implementation that performs EOI and ROAR analysis in tandem for dichotomous outcome trials is provided.

    1. Epidemiology and Global Health
    Qixin He, John K Chaillet, Frédéric Labbé
    Research Article

    The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.