A MET-PTPRK kinase-phosphatase rheostat controls ZNRF3 and Wnt signalling

  1. Minseong Kim
  2. Carmen Reinhard
  3. Christof Niehrs  Is a corresponding author
  1. Deutsches Krebsforschungszentrum (DKFZ), Germany

Abstract

Zinc and ring finger 3 (ZNRF3) is a transmembrane E3 ubiquitin ligase that targets Wnt receptors for ubiquitination and lysosomal degradation. Previously we showed that dephosphorylation of an endocytic tyrosine motif (4Y motif) in ZNRF3 by protein tyrosine phosphatase receptor-type kappa (PTPRK) promotes ZNRF3 internalization and Wnt receptor degradation (Chang et al. 2020). However, a responsible protein tyrosine kinase(s) (PTK) phosphorylating the 4Y motif remained elusive. Here we identify the proto-oncogene MET (mesenchymal-epithelial transition factor) as a 4Y kinase. MET binds to ZNRF3 and induces 4Y phosphorylation, stimulated by the MET ligand HGF (hepatocyte growth factor, scatter factor). HGF-MET signalling reduces ZNRF3-dependent Wnt receptor degradation thereby enhancing Wnt/b-catenin signalling. Conversely, depletion or pharmacological inhibition of MET promotes internalization of ZNRF3 and Wnt receptor degradation. We conclude that HGF-MET signalling phosphorylates- and PTPRK dephosphorylates ZNRF3 to regulate ZNRF3 internalization, functioning as a rheostat for Wnt signalling that may offer novel opportunities for therapeutic intervention.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for every figures.

Article and author information

Author details

  1. Minseong Kim

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3927-4899
  2. Carmen Reinhard

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Christof Niehrs

    Division of Molecular Embryology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
    For correspondence
    niehrs@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9561-9302

Funding

Deutsche Forschungsgemeinschaft (SFB 1324)

  • Minseong Kim
  • Carmen Reinhard
  • Christof Niehrs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roel Nusse, Stanford University, United States

Version history

  1. Received: June 9, 2021
  2. Accepted: September 29, 2021
  3. Accepted Manuscript published: September 30, 2021 (version 1)
  4. Version of Record published: October 14, 2021 (version 2)

Copyright

© 2021, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,060
    Page views
  • 197
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Minseong Kim
  2. Carmen Reinhard
  3. Christof Niehrs
(2021)
A MET-PTPRK kinase-phosphatase rheostat controls ZNRF3 and Wnt signalling
eLife 10:e70885.
https://doi.org/10.7554/eLife.70885

Share this article

https://doi.org/10.7554/eLife.70885

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.