Perception is associated with the brain's metabolic response to sensory stimulation

  1. Mauro DiNuzzo
  2. Silvia Mangia
  3. Marta Moraschi
  4. Daniele Mascali
  5. Gisela E Hagberg
  6. Federico Giove  Is a corresponding author
  1. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy
  2. University of Minnesota, United States
  3. University of Rome, Italy
  4. Università Gabriele D'Annunzio, Italy
  5. Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Germany

Abstract

Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.

Data availability

The study was developed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), LCmodel (http://s-provencher.com/lcmodel.shtml), jMRUI (http://www.jmrui.eu/) and AFNI (https://afni.nimh.nih.gov/). Data used for all the figures and for Tables 2-3 is available as source data to each element. Source data include also custom Matlab code for processing related to each figure. The raw data include sensitive data. The raw dataset cannot be made available in a public repository because of constraints originally set by the Ethics Committee and included in the informed consent signed by participants. Raw data that support the findings of this study are available from the corresponding author upon signing a MTA that would include: a list of authorized researchers; a commitment to not disclose the raw data to persons not included in the list; and a commitment to destroy the raw data when legitimate use is finished. Commercial use of the raw data is not permitted.

Article and author information

Author details

  1. Mauro DiNuzzo

    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Silvia Mangia

    Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marta Moraschi

    Department of Radiation Oncology, University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniele Mascali

    Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Gisela E Hagberg

    High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Federico Giove

    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
    For correspondence
    federico.giove@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6934-3146

Funding

Ministero della Salute (Ricerca Corrente)

  • Federico Giove

Max Planck Institute for Biological Cybernetics (Open Access funding)

  • Gisela E Hagberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study included human subjects and was performed by the authors in compliance with all applicable ethical standards, including the Helsinki declaration and its amendments, institutional/national standards, and international/national/institutional guidelines. The study was approved by the Ethics Committee of Fondazione Santa Lucia (Rome). All subjects gave informed consent before being enrolled in the study.

Copyright

© 2022, DiNuzzo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,555
    views
  • 390
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mauro DiNuzzo
  2. Silvia Mangia
  3. Marta Moraschi
  4. Daniele Mascali
  5. Gisela E Hagberg
  6. Federico Giove
(2022)
Perception is associated with the brain's metabolic response to sensory stimulation
eLife 11:e71016.
https://doi.org/10.7554/eLife.71016

Share this article

https://doi.org/10.7554/eLife.71016

Further reading

    1. Neuroscience
    Jordan Breffle, Hannah Germaine ... Paul Miller
    Research Article

    During both sleep and awake immobility, hippocampal place cells reactivate time-compressed versions of sequences representing recently experienced trajectories in a phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to forthcoming trajectories in novel environments experienced later, in a phenomenon known as preplay. Here, we present a model showing that sequences of spikes correlated with the place fields underlying spatial trajectories in both previously experienced and future novel environments can arise spontaneously in neural circuits with random, clustered connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay quality depends on the network’s balance of cluster isolation and overlap, with optimal preplay occurring in small-world regimes of high clustering yet short path lengths. We validate the results of our model by applying the same place field and preplay analyses to previously published rat hippocampal place cell data. Our results show that clustered recurrent connectivity can generate spontaneous preplay and immediate replay of novel environments. These findings support a framework whereby novel sensory experiences become associated with preexisting “pluripotent” internal neural activity patterns.

    1. Developmental Biology
    2. Neuroscience
    Sebastián Giunti, María Gabriela Blanco ... Diego Rayes
    Research Article

    A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including autism spectrum disorders (ASDs). Mutations in Phosphatase and Tensin Homolog (PTEN), the main negative regulator of the phosphatidylinositol 3-phosphate kinase/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the Caenorhabditis elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18/PTEN mutations impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. We found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO activity, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides valuable insights into the link between PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying the potential therapeutic effects of KGDs.