Perception is associated with the brain's metabolic response to sensory stimulation

  1. Mauro DiNuzzo
  2. Silvia Mangia
  3. Marta Moraschi
  4. Daniele Mascali
  5. Gisela E Hagberg
  6. Federico Giove  Is a corresponding author
  1. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy
  2. University of Minnesota, United States
  3. Campus Bio-Medico University of Rome, Italy
  4. Università Gabriele D'Annunzio, Italy
  5. Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Germany

Abstract

Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.

Data availability

The study was developed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), LCmodel (http://s-provencher.com/lcmodel.shtml), jMRUI (http://www.jmrui.eu/) and AFNI (https://afni.nimh.nih.gov/). Data used for all the figures and for Tables 2-3 is available as source data to each element. Source data include also custom Matlab code for processing related to each figure. The raw data include sensitive data. The raw dataset cannot be made available in a public repository because of constraints originally set by the Ethics Committee and included in the informed consent signed by participants. Raw data that support the findings of this study are available from the corresponding author upon signing a MTA that would include: a list of authorized researchers; a commitment to not disclose the raw data to persons not included in the list; and a commitment to destroy the raw data when legitimate use is finished. Commercial use of the raw data is not permitted.

Article and author information

Author details

  1. Mauro DiNuzzo

    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Silvia Mangia

    Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marta Moraschi

    Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniele Mascali

    Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Gisela E Hagberg

    High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Federico Giove

    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
    For correspondence
    federico.giove@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6934-3146

Funding

Ministero della Salute (Ricerca Corrente)

  • Federico Giove

Max Planck Institute for Biological Cybernetics (Open Access funding)

  • Gisela E Hagberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study included human subjects and was performed by the authors in compliance with all applicable ethical standards, including the Helsinki declaration and its amendments, institutional/national standards, and international/national/institutional guidelines. The study was approved by the Ethics Committee of Fondazione Santa Lucia (Rome). All subjects gave informed consent before being enrolled in the study.

Copyright

© 2022, DiNuzzo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mauro DiNuzzo
  2. Silvia Mangia
  3. Marta Moraschi
  4. Daniele Mascali
  5. Gisela E Hagberg
  6. Federico Giove
(2022)
Perception is associated with the brain's metabolic response to sensory stimulation
eLife 11:e71016.
https://doi.org/10.7554/eLife.71016

Share this article

https://doi.org/10.7554/eLife.71016

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.