Perception is associated with the brain's metabolic response to sensory stimulation

  1. Mauro DiNuzzo
  2. Silvia Mangia
  3. Marta Moraschi
  4. Daniele Mascali
  5. Gisela E Hagberg
  6. Federico Giove  Is a corresponding author
  1. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy
  2. University of Minnesota, United States
  3. Campus Bio-Medico University of Rome, Italy
  4. Università Gabriele D'Annunzio, Italy
  5. Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Germany

Abstract

Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.

Data availability

The study was developed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), LCmodel (http://s-provencher.com/lcmodel.shtml), jMRUI (http://www.jmrui.eu/) and AFNI (https://afni.nimh.nih.gov/). Data used for all the figures and for Tables 2-3 is available as source data to each element. Source data include also custom Matlab code for processing related to each figure. The raw data include sensitive data. The raw dataset cannot be made available in a public repository because of constraints originally set by the Ethics Committee and included in the informed consent signed by participants. Raw data that support the findings of this study are available from the corresponding author upon signing a MTA that would include: a list of authorized researchers; a commitment to not disclose the raw data to persons not included in the list; and a commitment to destroy the raw data when legitimate use is finished. Commercial use of the raw data is not permitted.

Article and author information

Author details

  1. Mauro DiNuzzo

    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Silvia Mangia

    Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marta Moraschi

    Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniele Mascali

    Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Gisela E Hagberg

    High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Federico Giove

    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
    For correspondence
    federico.giove@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6934-3146

Funding

Ministero della Salute (Ricerca Corrente)

  • Federico Giove

Max Planck Institute for Biological Cybernetics (Open Access funding)

  • Gisela E Hagberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study included human subjects and was performed by the authors in compliance with all applicable ethical standards, including the Helsinki declaration and its amendments, institutional/national standards, and international/national/institutional guidelines. The study was approved by the Ethics Committee of Fondazione Santa Lucia (Rome). All subjects gave informed consent before being enrolled in the study.

Reviewing Editor

  1. Peter Kok, University College London, United Kingdom

Version history

  1. Received: June 4, 2021
  2. Preprint posted: September 20, 2021 (view preprint)
  3. Accepted: February 25, 2022
  4. Accepted Manuscript published: February 28, 2022 (version 1)
  5. Accepted Manuscript updated: March 7, 2022 (version 2)
  6. Version of Record published: April 25, 2022 (version 3)

Copyright

© 2022, DiNuzzo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,390
    Page views
  • 377
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mauro DiNuzzo
  2. Silvia Mangia
  3. Marta Moraschi
  4. Daniele Mascali
  5. Gisela E Hagberg
  6. Federico Giove
(2022)
Perception is associated with the brain's metabolic response to sensory stimulation
eLife 11:e71016.
https://doi.org/10.7554/eLife.71016

Share this article

https://doi.org/10.7554/eLife.71016

Further reading

    1. Developmental Biology
    2. Neuroscience
    Wen Wang, Xiao Zhang ... Zi-Bing Jin
    Research Article Updated

    Chimeric RNAs have been found in both cancerous and healthy human cells. They have regulatory effects on human stem/progenitor cell differentiation, stemness maintenance, and central nervous system development. However, whether they are present in human retinal cells and their physiological functions in the retinal development remain unknown. Based on the human embryonic stem cell-derived retinal organoids (ROs) spanning from days 0 to 120, we present the expression atlas of chimeric RNAs throughout the developing ROs. We confirmed the existence of some common chimeric RNAs and also discovered many novel chimeric RNAs during retinal development. We focused on CTNNBIP1-CLSTN1 (CTCL) whose downregulation caused precocious neuronal differentiation and a marked reduction of neural progenitors in human cerebral organoids. CTCL is universally present in human retinas, ROs, and retinal cell lines, and its loss-of-function biases the progenitor cells toward retinal pigment epithelial cell fate at the expense of retinal cells. Together, this work provides a landscape of chimeric RNAs and reveals evidence for their critical role in human retinal development.

    1. Neuroscience
    Peibo Xu, Jian Peng ... Yuejun Chen
    Research Article

    Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.