1. Microbiology and Infectious Disease
Download icon

Total parasite biomass but not peripheral parasitaemia is associated with endothelial and haematological perturbations in Plasmodium vivax patients

  1. João Luiz Silva-Filho  Is a corresponding author
  2. João CK Dos-Santos
  3. Carla C Judice
  4. Dario Beraldi
  5. Kannan Venugopal
  6. Diogenes De Lima
  7. Helder Nakaya
  8. Erich EV Paula
  9. Stefanie Costa Pinto Lopes
  10. Marcus VG Lacerda
  11. Matthias Marti  Is a corresponding author
  12. Fabio TM Costa  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. Laboratory of Tropical Diseases, University of Campinas, Brazil
  3. Institute of Biology, University of Campinas, Brazil
  4. Institute of Infection Immunity and Inflammation, University of Glasgow, United Kingdom
  5. 3School of Pharmaceutical Sciences, University of São Paulo, Brazil
  6. University of São Paulo, Brazil
  7. University of Campinas, Brazil
  8. Institute Leônidas and Maria Deane, Brazil
  9. Tropical Medicine Foundation, Brazil
Research Article
  • Cited 0
  • Views 132
  • Annotations
Cite this article as: eLife 2021;10:e71351 doi: 10.7554/eLife.71351

Abstract

Plasmodium vivax is the major cause of human malaria in the Americas. How P. vivax infection can lead to poor clinical outcomes, despite low peripheral parasitaemia remains a matter of intense debate. Estimation of total P. vivax biomass based on circulating markers indicates existence of a predominant parasite population outside of circulation. In this study we investigate associations between both peripheral and total parasite biomass and host response in vivax malaria. We analysed parasite and host signatures in a cohort of uncomplicated vivax malaria patients from Manaus, Brazil, combining clinical and parasite parameters, multiplexed analysis of host responses and ex vivo assays. Patterns of clinical features, parasite burden and host signatures measured in plasma across the patient cohort were highly heterogenous. Further data deconvolution revealed two patient clusters, here termed Vivaxlow and Vivaxhigh. These patient subgroups were defined based on differences in total parasite biomass but not peripheral parasitaemia. Overall Vivaxlow patients clustered with healthy donors and Vivaxhigh patients showed more profound alterations in haematological parameters, endothelial cell (EC) activation and glycocalyx breakdown and levels of cytokines regulating different haematopoiesis pathways compared to Vivaxlow. Vivaxhigh patients presented more severe thrombocytopenia and lymphopenia, along with enrichment of neutrophils in the peripheral blood and increased neutrophil-to-lymphocyte ratio (NLCR). When patients' signatures were combined, high association of total parasite biomass with a subset of markers of EC activation, thrombocytopenia and lymphopenia severity was observed. Finally, machine learning models defined a combination of host parameters measured in the circulation that could predict the extent of parasite infection outside of circulation. Altogether, our data show that total parasite biomass is a better predictor of perturbations in host homeostasis in P. vivax patients than peripheral parasitaemia. This supports the emerging paradigm of a P. vivax tissue reservoir, in particular in the hematopoietic niche of bone marrow and spleen.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Numerical tables and source data files have been provided. Table 1, Figure 2-source data 1 and Figure 2-figure supplement 2-source data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. João Luiz Silva-Filho

    University of Glasgow, Glasgow, United Kingdom
    For correspondence
    joao.dasilvafilho@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4762-2205
  2. João CK Dos-Santos

    Laboratory of Tropical Diseases, University of Campinas, Campinas, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-9845
  3. Carla C Judice

    Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1839-053X
  4. Dario Beraldi

    University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kannan Venugopal

    Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Diogenes De Lima

    3School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Helder Nakaya

    University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5297-9108
  8. Erich EV Paula

    University of Campinas, Campinas, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefanie Costa Pinto Lopes

    Institute Leônidas and Maria Deane, Manuas, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  10. Marcus VG Lacerda

    Tropical Medicine Foundation, Manuas, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthias Marti

    University of Glasgow, Glasgow, United Kingdom
    For correspondence
    matthias.marti@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1040-9566
  12. Fabio TM Costa

    Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
    For correspondence
    fabiotmc72@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo (2019/01578-2)

  • João Luiz Silva-Filho

Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/18611-7)

  • João Luiz Silva-Filho

Wellcome Trust (104111)

  • João Luiz Silva-Filho

Fundação de Amparo à Pesquisa do Estado de São Paulo (2016/12855-9)

  • João Luiz Silva-Filho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects enrolled in the study were adults. Written informed consent was obtained from all participants and the study was conducted according to the Declaration of Helsinki principles. The study was approved by the local Research Ethics Committee at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD, Manaus, Brazil), under #CAAE: 54234216.1.0000.0005.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Publication history

  1. Preprint posted: March 20, 2021 (view preprint)
  2. Received: June 17, 2021
  3. Accepted: September 28, 2021
  4. Accepted Manuscript published: September 29, 2021 (version 1)

Copyright

© 2021, Silva-Filho et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 132
    Page views
  • 38
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Jennifer E Jones et al.
    Research Article Updated

    The influenza A virus (IAV) genome consists of eight negative-sense viral RNA (vRNA) segments that are selectively assembled into progeny virus particles through RNA-RNA interactions. To explore putative intersegmental RNA-RNA relationships, we quantified similarity between phylogenetic trees comprising each vRNA segment from seasonal human IAV. Intersegmental tree similarity differed between subtype and lineage. While intersegmental relationships were largely conserved over time in H3N2 viruses, they diverged in H1N1 strains isolated before and after the 2009 pandemic. Surprisingly, intersegmental relationships were not driven solely by protein sequence, suggesting that IAV evolution could also be driven by RNA-RNA interactions. Finally, we used confocal microscopy to determine that colocalization of highly coevolved vRNA segments is enriched over other assembly intermediates at the nuclear periphery during productive viral infection. This study illustrates how putative RNA interactions underlying selective assembly of IAV can be interrogated with phylogenetics.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Debapriyo Chakraborty
    Insight

    The repeated emergence of similar variants of influenza virus is linked to interactions between the virus’s RNA segments.