Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics

  1. Kai Weißenbruch  Is a corresponding author
  2. Justin Grewe
  3. Marc Hippler
  4. Magdalena Fladung
  5. Moritz Tremmel
  6. Kathrin Stricker
  7. Ulrich Sebastian Schwarz  Is a corresponding author
  8. Martin Bastmeyer  Is a corresponding author
  1. Karlsruhe Institute of Technology, Germany
  2. University of Heidelberg, Germany
  3. Karlsruhe Institute of, Germany
  4. Heidelberg University, Germany

Abstract

Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously-coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously-coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source files with the raw data are provided for all Figures, where quantifications are carried out.

Article and author information

Author details

  1. Kai Weißenbruch

    Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Karlsruhe, Germany
    For correspondence
    kai.weissenbruch@kit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9463-6725
  2. Justin Grewe

    University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marc Hippler

    Karlsruhe Institute of, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Magdalena Fladung

    Zoological Institute - Cell and Neurobiology, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4213-2891
  5. Moritz Tremmel

    Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8901-9362
  6. Kathrin Stricker

    Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ulrich Sebastian Schwarz

    Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
    For correspondence
    schwarz@thphys.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1483-640X
  8. Martin Bastmeyer

    Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Karlsruhe, Germany
    For correspondence
    bastmeyer@kit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3471-8400

Funding

Deutsche Forschungsgemeinschaft (EXC 2082/1-390761711)

  • Ulrich Sebastian Schwarz
  • Martin Bastmeyer

Deutsche Forschungsgemeinschaft (EXC 2181/1 - 390900948)

  • Ulrich Sebastian Schwarz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Publication history

  1. Preprint posted: October 9, 2020 (view preprint)
  2. Received: July 2, 2021
  3. Accepted: August 9, 2021
  4. Accepted Manuscript published: August 10, 2021 (version 1)
  5. Version of Record published: August 26, 2021 (version 2)

Copyright

© 2021, Weißenbruch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,864
    Page views
  • 286
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai Weißenbruch
  2. Justin Grewe
  3. Marc Hippler
  4. Magdalena Fladung
  5. Moritz Tremmel
  6. Kathrin Stricker
  7. Ulrich Sebastian Schwarz
  8. Martin Bastmeyer
(2021)
Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics
eLife 10:e71888.
https://doi.org/10.7554/eLife.71888
  1. Further reading

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Nicola Bellotto, Jaime Agudo-Canalejo ... Victor Sourjik
    Research Article

    Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.

    1. Cell Biology
    Dawafuti Sherpa, Judith Mueller ... Arno F Alpi
    Research Article

    The development of haematopoietic stem cells into mature erythrocytes – erythropoiesis – is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH’s cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.