Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics
Abstract
Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously-coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously-coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source files with the raw data are provided for all Figures, where quantifications are carried out.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (EXC 2082/1-390761711)
- Ulrich Sebastian Schwarz
- Martin Bastmeyer
Deutsche Forschungsgemeinschaft (EXC 2181/1 - 390900948)
- Ulrich Sebastian Schwarz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Weißenbruch et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,896
- views
-
- 433
- downloads
-
- 31
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.