FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons

Abstract

Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here we develop a strategy combining compartment-specific CLIP and TRAP in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many which have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies and suggest a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.

Data availability

Sequencing data have been deposited in GEO under accession code GSE174303, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174303, token: qbqdiogwzxuflob

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Caryn R Hale

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    For correspondence
    chale@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Kirsty Sawicka

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4195-6327
  3. Kevin Mora

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John J Fak

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jin Joo Kang

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paula Cutrim

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katarzyna Cialowicz

    Bio-Imaging Resource Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert B Darnell

    Howard Hughes Medical Institute, Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5134-8088

Funding

Leon Levy Foundation

  • Caryn R Hale

Simons Foundation

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

National Institute of General Medical Sciences (R35NS097404)

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

Howard Hughes Medical Institute

  • Robert B Darnell

National Institutes of Health (NS081706)

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse procedures were conducted according to the Institutional Animal Care and Use Committee (IACUC) guidelines at the Rockefeller University using protocol numbers 14678, 17013 and 20028.

Copyright

© 2021, Hale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,668
    views
  • 633
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caryn R Hale
  2. Kirsty Sawicka
  3. Kevin Mora
  4. John J Fak
  5. Jin Joo Kang
  6. Paula Cutrim
  7. Katarzyna Cialowicz
  8. Thomas S Carroll
  9. Robert B Darnell
(2021)
FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons
eLife 10:e71892.
https://doi.org/10.7554/eLife.71892

Share this article

https://doi.org/10.7554/eLife.71892

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.

    1. Genetics and Genomics
    Shek Man Chim, Kristen Howell ... Regeneron Genetics Center
    Research Article

    Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.