FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons

Abstract

Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here we develop a strategy combining compartment-specific CLIP and TRAP in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many which have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies and suggest a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.

Data availability

Sequencing data have been deposited in GEO under accession code GSE174303, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174303, token: qbqdiogwzxuflob

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Caryn R Hale

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    For correspondence
    chale@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Kirsty Sawicka

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4195-6327
  3. Kevin Mora

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John J Fak

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jin Joo Kang

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paula Cutrim

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katarzyna Cialowicz

    Bio-Imaging Resource Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert B Darnell

    Howard Hughes Medical Institute, Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5134-8088

Funding

Leon Levy Foundation

  • Caryn R Hale

Simons Foundation

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

National Institute of General Medical Sciences (R35NS097404)

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

Howard Hughes Medical Institute

  • Robert B Darnell

National Institutes of Health (NS081706)

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse procedures were conducted according to the Institutional Animal Care and Use Committee (IACUC) guidelines at the Rockefeller University using protocol numbers 14678, 17013 and 20028.

Copyright

© 2021, Hale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,726
    views
  • 637
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caryn R Hale
  2. Kirsty Sawicka
  3. Kevin Mora
  4. John J Fak
  5. Jin Joo Kang
  6. Paula Cutrim
  7. Katarzyna Cialowicz
  8. Thomas S Carroll
  9. Robert B Darnell
(2021)
FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons
eLife 10:e71892.
https://doi.org/10.7554/eLife.71892

Share this article

https://doi.org/10.7554/eLife.71892

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Genetics and Genomics
    Shuai Zhang, Ruixue Wang ... Lin Sun
    Research Article

    N6-methyladenosine (m6A) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of m6A components appears in a variety of human diseases. RNA m6A modification in Drosophila has proven to be involved in sex determination regulated by Sxl and may affect X chromosome expression through the MSL complex. The dosage-related effects under the condition of genomic imbalance (i.e. aneuploidy) are related to various epigenetic regulatory mechanisms. Here, we investigated the roles of RNA m6A modification in unbalanced genomes using aneuploid Drosophila. The results showed that the expression of m6A components changed significantly under genomic imbalance, and affected the abundance and genome-wide distribution of m6A, which may be related to the developmental abnormalities of aneuploids. The relationships between methylation status and classical dosage effect, dosage compensation, and inverse dosage effect were also studied. In addition, we demonstrated that RNA m6A methylation may affect dosage-dependent gene regulation through dosage-sensitive modifiers, alternative splicing, the MSL complex, and other processes. More interestingly, there seems to be a close relationship between MSL complex and RNA m6A modification. It is found that ectopically overexpressed MSL complex, especially the levels of H4K16Ac through MOF, could influence the expression levels of m6A modification and genomic imbalance may be involved in this interaction. We found that m6A could affect the levels of H4K16Ac through MOF, a component of the MSL complex, and that genomic imbalance may be involved in this interaction. Altogether, our work reveals the dynamic and regulatory role of RNA m6A modification in unbalanced genomes, and may shed new light on the mechanisms of aneuploidy-related developmental abnormalities and diseases.