1. Genetics and Genomics
  2. Neuroscience
Download icon

FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons

Research Article
  • Cited 0
  • Views 587
  • Annotations
Cite this article as: eLife 2021;10:e71892 doi: 10.7554/eLife.71892

Abstract

Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here we develop a strategy combining compartment-specific CLIP and TRAP in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many which have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies and suggest a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.

Data availability

Sequencing data have been deposited in GEO under accession code GSE174303, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174303, token: qbqdiogwzxuflob

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Caryn R Hale

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    For correspondence
    chale@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Kirsty Sawicka

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4195-6327
  3. Kevin Mora

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John J Fak

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jin Joo Kang

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paula Cutrim

    Laboratory of Molecular Neuro-Oncology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katarzyna Cialowicz

    Bio-Imaging Resource Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert B Darnell

    Howard Hughes Medical Institute, Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5134-8088

Funding

Leon Levy Foundation

  • Caryn R Hale

Simons Foundation

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

National Institute of General Medical Sciences (R35NS097404)

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

Howard Hughes Medical Institute

  • Robert B Darnell

National Institutes of Health (NS081706)

  • Caryn R Hale
  • Kirsty Sawicka
  • Kevin Mora
  • John J Fak
  • Jin Joo Kang
  • Paula Cutrim
  • Robert B Darnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse procedures were conducted according to the Institutional Animal Care and Use Committee (IACUC) guidelines at the Rockefeller University using protocol numbers 14678, 17013 and 20028.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Publication history

  1. Received: July 2, 2021
  2. Accepted: December 13, 2021
  3. Accepted Manuscript published: December 23, 2021 (version 1)

Copyright

© 2021, Hale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 587
    Page views
  • 126
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Zeyang Shen et al.
    Research Article

    Regulation of gene expression requires the combinatorial binding of sequence-specific transcription factors (TFs) at promoters and enhancers. Prior studies showed that alterations in the spacing between TF binding sites can influence promoter and enhancer activity. However, the relative importance of TF spacing alterations resulting from naturally occurring insertions and deletions (InDels) has not been systematically analyzed. To address this question, we first characterized the genome-wide spacing relationships of 73 TFs in human K562 cells as determined by ChIP-seq. We found a dominant pattern of a relaxed range of spacing between collaborative factors, including 45 TFs exclusively exhibiting relaxed spacing with their binding partners. Next, we exploited millions of InDels provided by genetically diverse mouse strains and human individuals to investigate the effects of altered spacing on TF binding and local histone acetylation. These analyses suggested that spacing alterations resulting from naturally occurring InDels are generally tolerated in comparison to genetic variants directly affecting TF binding sites. To experimentally validate this prediction, we introduced synthetic spacing alterations between PU.1 and C/EBPβ binding sites at six endogenous genomic loci in a macrophage cell line. Remarkably, collaborative binding of PU.1 and C/EBPβ at these locations tolerated changes in spacing ranging from 5-bp increase to >30-bp decrease. Collectively, these findings have implications for understanding mechanisms underlying enhancer selection and for the interpretation of non-coding genetic variation.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Marco Todesco et al.
    Research Article

    Variation in floral displays, both between and within species, has been long known to be shaped by the mutualistic interactions that plants establish with their pollinators. However, increasing evidence suggests that abiotic selection pressures influence floral diversity as well. Here, we analyse the genetic and environmental factors that underlie patterns of floral pigmentation in wild sunflowers. While sunflower inflorescences appear invariably yellow to the human eye, they display extreme diversity for patterns of ultraviolet pigmentation, which are visible to most pollinators. We show that this diversity is largely controlled by cis-regulatory variation affecting a single MYB transcription factor, HaMYB111, through accumulation of ultraviolet (UV)-absorbing flavonol glycosides in ligules (the ‘petals’ of sunflower inflorescences). Different patterns of ultraviolet pigments in flowers are strongly correlated with pollinator preferences. Furthermore, variation for floral ultraviolet patterns is associated with environmental variables, especially relative humidity, across populations of wild sunflowers. Ligules with larger ultraviolet patterns, which are found in drier environments, show increased resistance to desiccation, suggesting a role in reducing water loss. The dual role of floral UV patterns in pollinator attraction and abiotic response reveals the complex adaptive balance underlying the evolution of floral traits.