Structure and function of the ROR2 cysteine-rich domain in vertebrate noncanonical WNT5A signaling

  1. Samuel C Griffiths
  2. Jia Tan
  3. Armin Wagner
  4. Levi L Blazer
  5. Jarret J Adams
  6. Srisathya Srinivasan
  7. Shayan Moghisaei
  8. Sachdev S Sidhu
  9. Christian Siebold  Is a corresponding author
  10. Hsin-Yi Henry Ho  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of California, Davis, United States
  3. Diamond Light Source, United Kingdom
  4. University of Waterloo, Canada

Abstract

The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, Brachydactyly B and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Samuel C Griffiths

    Division of Structural Biology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jia Tan

    Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Armin Wagner

    Science Division, Diamond Light Source, Didcot, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8995-7324
  4. Levi L Blazer

    School of Pharmacy, University of Waterloo, Waterloo, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9594-4642
  5. Jarret J Adams

    School of Pharmacy, University of Waterloo, Waterloo, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Srisathya Srinivasan

    Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shayan Moghisaei

    Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sachdev S Sidhu

    School of Pharmacy, University of Waterloo, Waterloo, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7755-5918
  9. Christian Siebold

    Division of Structural Biology, University of Oxford, Oxford, United Kingdom
    For correspondence
    christian.siebold@strubi.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  10. Hsin-Yi Henry Ho

    Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, United States
    For correspondence
    hyhho@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8780-7864

Funding

National Institutes of Health (1R35GM119574)

  • Hsin-Yi Henry Ho

National Institutes of Health (1R35GM144341)

  • Hsin-Yi Henry Ho

Cancer Research UK (C20724/A26752)

  • Christian Siebold

Wellcome Trust (203141/Z/16/Z)

  • Christian Siebold

Wellcome Trust (099675/Z/12/Z)

  • Samuel C Griffiths

National Institutes of Health (2P30CA093373-19)

  • Hsin-Yi Henry Ho

Cancer Research UK (DRCRPG-May23/100002)

  • Christian Siebold

National Institutes of Health (S10 OD018223)

  • Hsin-Yi Henry Ho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olga Boudker, Weill Cornell Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#21394) of the University of California, Davis. The protocol was approved by the IACUC of the University of California, Davis.

Version history

  1. Received: July 6, 2021
  2. Accepted: May 17, 2024
  3. Accepted Manuscript published: May 23, 2024 (version 1)

Copyright

© 2024, Griffiths et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 261
    views
  • 85
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel C Griffiths
  2. Jia Tan
  3. Armin Wagner
  4. Levi L Blazer
  5. Jarret J Adams
  6. Srisathya Srinivasan
  7. Shayan Moghisaei
  8. Sachdev S Sidhu
  9. Christian Siebold
  10. Hsin-Yi Henry Ho
(2024)
Structure and function of the ROR2 cysteine-rich domain in vertebrate noncanonical WNT5A signaling
eLife 13:e71980.
https://doi.org/10.7554/eLife.71980

Share this article

https://doi.org/10.7554/eLife.71980

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Sanjay Kumar Sukumar, Vimala Antonydhason ... Ruth H Palmer
    Research Article

    Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.